

SQL Server In-Memory OLTP Internals Overview for SQL Server

2016 CTP3

SQL Server Technical Article

Writer: Kalen Delaney

Technical Reviewers: Sunil Agarwal, Jos de Bruijn

Published: December 2015

Applies to: SQL Server 2016 CTP3

Summary:
In-memory OLTP, frequently referred to by its codename “Hekaton”, was introduced in SQL Server 2014.

This powerful technology allows you to take advantage of large amounts of memory and many dozens

of cores to increase performance for OLTP operations by up to 30 to 40 times! SQL Server 2016 is

continuing the investment in In-memory OLTP by removing many of the limitations found in SQL Server

2014, and enhancing internal processing algorithms so that In-memory OLTP can provide even greater

improvements. This paper describes the implementation of SQL Server 2016’s In-memory OLTP

technology as of SQL Server 2016 CTP3. Using In-memory OLTP, tables can be declared as ‘memory

optimized’ to enable In-Memory OLTP’s capabilities. Memory-optimized tables are fully transactional

and can be accessed using Transact-SQL. Transact-SQL stored procedures, triggers and scalar UDFs can

be compiled to machine code for further performance improvements on memory-optimized tables. The

engine is designed for high concurrency with no blocking.

2

Copyright

This document is provided “as-is”. Information and views expressed in this document, including URL and

other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2015 Kalen Delaney. All rights reserved.

3

Contents
Introduction .. 6

Design Considerations and Purpose ... 6

Terminology .. 7

What’s Special About In-Memory OLTP? .. 7

Memory-optimized tables .. 8

Indexes on memory-optimized tables .. 9

Concurrency improvements ... 9

Natively Compiled Modules .. 10

Using In-Memory OLTP ... 10

Creating Databases ... 10

Creating Tables.. 11

Row and Index Storage ... 14

Rows .. 14

Row header ... 14

Payload area .. 15

Indexes On Memory-Optimized Tables .. 15

Hash Indexes ... 15

Range Indexes ... 18

Columnstore Indexes .. 25

Columnstore Index Basic Architecture .. 26

Index Metadata ... 28

Altering Indexes .. 28

Data Operations .. 29

Isolation Levels Allowed with Memory-Optimized Tables .. 30

Deleting ... 31

Updating and Inserting ... 31

Reading ... 33

T-SQL Support ... 33

Garbage Collection of Rows in Memory ... 34

Transaction Processing ... 36

Isolation Levels .. 37

Validation and Post-processing ... 40

Commit Dependencies .. 4342

4

Post-processing ... 43

Concurrency .. 44

Locks .. 44

Latches .. 45

Checkpoint and Recovery ... 4645

Transaction Logging .. 4746

Checkpoint .. 49

Checkpoint Files .. 5049

The Checkpoint Process .. 57

Merging Checkpoint Files .. 58

Automatic Merge .. 58

Garbage Collection of Checkpoint Files .. 5958

Recovery.. 59

Native Compilation of Tables and and Native Modules .. 59

What is native compilation? ... 59

Maintenance of DLLs... 60

Native compilation of tables ... 60

Native compilation of modules ... 61

Compilation and Query Processing ... 62

Parameter sniffing ... 63

SQL Server Feature Support .. 63

Manageability Experience ... 63

Memory Requirements ... 63

Memory Size Limits ... 64

Managing Memory with the Resource Governor ... 64

Metadata ... 65

Catalog Views .. 65

Dynamic Management Objects ... 66

XEvents .. 6766

Performance Counters .. 67

Migration to In-Memory OLTP .. 68

High Volume of INSERTs ... 69

High Volume of SELECTs ... 70

CPU-intensive operations ... 70

5

Extremely fast business transactions .. 70

Session state management ... 71

Unsuitable Application Scenarios ... 71

The Migration Process .. 72

Best Practice Recommendations .. 73

Index Tuning .. 73

General Suggestions.. 74

Summary ... 75

For more information: .. 75

6

Introduction
SQL Server was originally designed at a time when it could be assumed that main memory was very

expensive, so data needed to reside on disk except when it was actually needed for processing. This

assumption is no longer valid as memory prices have dropped enormously over the last 30 years. At the

same time, multi-core servers have become affordable, so that today one can buy a server with 32 cores

and 1TB of memory for under $50K. Since many, if not most, of the OLTP databases in production can fit

entirely in 1TB, we need to re-evaluate the benefit of storing data on disk and incurring the I/O expense

when the data needs to be read into memory to be processed. In addition, OLTP databases also incur

expenses when this data is updated and needs to be written back out to disk. Memory-optimized tables

are stored completely differently than disk-based tables and these new data structures allow the data to

be accessed and processed much more efficiently.

Because of this trend to much more available memory and many more cores, the SQL Server team at

Microsoft began building a database engine optimized for large main memories and many-core CPUs.

This paper describes the technical implementation of the In-memory OLTP database engine feature.

Design Considerations and Purpose
The move to produce a true main-memory database has been driven by three basic needs: 1) fitting

most or all of data required by a workload into main-memory, 2) lower latency time for data operations,

and 3) specialized database engines that target specific types of workloads need to be tuned just for

those workloads. Moore’s law has impacted the cost of memory allowing for main memories to be large

enough to satisfy (1) and to partially satisfy (2). (Larger memories reduce latency for reads, but don’t

affect the latency due towrites to disk needed by traditional database systems). Other features of In-

Memory OLTP allow for greatly improved latency for data modification operations. The need for

specialized database engines is driven by the recognition that systems designed for a particular class of

workload can frequently out-perform more general purpose systems by a factor of 10 or more. Most

specialized systems, including those for CEP (complex event processing), DW/BI and OLTP, optimize data

structures and algorithms by focusing on in-memory structures.

Microsoft’s reason for creating In-Memory OLTP comes mainly from this fact that main memory sizes

are growing at a rapid rate and becoming less expensive. It is not unreasonable to think that most, if not

all, OLTP databases or the entire performance sensitive working dataset could reside entirely in

memory. Many of the largest financial, online retail and airline reservation systems fall between 500GB

to 5TB with working sets that are significantly smaller. As of Q2 2015, even a four socket server could

hold 3TB of DRAM using 32GB SIMMS and 6TB of DRAM using 64GB DIMMS. Looking further ahead, it’s

entirely possible that in a few years you’ll be able to build distributed DRAM based systems with

capacities of 1-10 Petabytes at a cost of less than $5/GB. It is also only a question of time before non-

volatile RAM becomes viable, as it already is in development in various form factors.

If most or all of an application’s data is able to be entirely memory resident, the costing

rules,particularly for estimating I/O costs, that the SQL Server optimizer has used since the very first

version become almost completely obsolete, because the rules assume all pages accessed can

potentially require a physical read from disk. If there is no need to ever read from disk, the optimizer

7

doesn’t need to consider I/O cost at all. . In addition, if there is no wait time required for disk reads,

other wait statistics, such as waiting for locks to be released, waiting for latches to be available, or

waiting for log writes to complete, can become disproportionately large. In-Memory OLTP addresses all

these issues. In-Memory OLTP removes the issues of waiting for locks to be released, using a new type

of multi-version optimistic concurrency control. It reduces the delays of waiting for log writes by

generating far less log data and needing fewer log writes.

Terminology
 SQL Server 2016’s In-Memory OLTP feature refers to a suite of technologies for working with memory-

optimized tables. The alternative to memory-optimized tables will be referred to as disk-based tables,

which SQL Server has always provided. Terms to be used include:

 Memory-optimized tables refer to tables using the new data structures added as part of In-

Memory OLTP, and will be described in detail in this paper.

 Disk-based tables refer to the alternative to memory-optimized tables, and use the data

structures that SQL Server has always used, with pages of 8K that need to be read from and

written to disk as a unit.

 Natively compiled modules refer to object types supported by In-Memory OLTP that can be

compiled to machine code and have the potential to increase performance even further than

just using memory-optimized tables. Supported object types are stored procedures, triggers

scalar user-defined functions and inline multistatement user-defined functions. The alternative

is interpreted Transact-SQL modules, which is what SQL Server has always used. Natively

compiled modules can only reference memory-optimized tables.

 Cross-container transactions refer to transactions that reference both memory-optimized tables

and disk-based tables.

 Interop refers to interpreted Transact-SQL that references memory-optimized tables

What’s Special About In-Memory OLTP?
In-Memory OLTP is integrated with the SQL Server relational engine, and can be accessed transparently

using the same interfacesIn fact, users may be unaware that they are working with memory-optimized

tables rather than disk-based tables. However, the internal behavior and capabilities of In-memory OLTP

are very different. Figure 1 gives an overview of the SQL Server engine with the In-Memory OLTP

components.

8

Figure 1The SQL Server engine including the In-Memory OLTP component

Notice that the client application connects to the TDS Handler the same way for memory-optimized

tables or disk-based tables, whether it will be calling natively compiled stored procedures or interpreted

Transact-SQL. You can see that interpreted Transact-SQL can access memory-optimized tables using

the interop capabilities, but that natively compiled stored procedures can only access memory-

optimized tables.

Memory-optimized tables
One of the most important differences between memory-optimized tables and disk-based tables is that

pages do not need to be read into cache from disk when the memory-optimized tables are accessed. All

the data is stored in memory, all the time. Memory-optimized tables can be either durable or non-

durable. The default is for these tables to be durable, and these durable tables also meet all the other

transactional requirements; they are atomic, isolated, and consistent. A set of checkpoint files (data and

delta file pairs), which are only used for recovery purposes, is created on files residing in memory-

optimized filegroups that keep track of the changes to the data in the durable tables. These checkpoint

files are append-only.

Operations on memory-optimized tables use the same transaction log that is used for operations on

disk-based tables, and as always, the transaction log is stored on disk. In case of a system crash or server

shutdown, the rows of data in the memory-optimized tables can be recreated from the checkpoint files

and the transaction log.

In-Memory OLTP does provide the option to create a table that is non-durable and not logged using an

option called SCHEMA_ONLY. As the option indicates, the table schema will be durable, even though the

9

data is not. These tables do not require any IO operations during transaction processing, and nothing is

written to the checkpoint files for these tables. The data is only available in memory while SQL Server is

running. In the event of a SQL Server shutdown or an AlwaysOn Availabilty group failover, the data in

these tables is lost. The schema will be recreated when the database they belong to is recovered, but

there will be no data. These tables could be useful, for example, as staging tables in ETL scenarios or for

storing Web server session state. Although the data is not durable, operations on these tables meet all

the other transactional requirements. (That is, they are atomic, isolated, and consistent.) We’ll see the

syntax for creating both durable and non-durable tables in the section on Creating Tables.

Note: Non-durable memory-optimized table may seem similar to global temporary tables

(indicated with ## at the beginning of the name.) and can sometimes be used for similar

purposes. However, global temp tables are regular disk-based tables, stored on pages in the

tempdb database, and read from and written to disk as needed. The only thing special about the

global temp tables is that they are dropped when no longer needed. Also, like any other object

in tempdb, neither the schema nor the data is recovered when SQL Server is restarted. A non-

durable memory-optimized table can be a part of any database that allows memory-optimized

tables, but its data only resides in memory. Memory-optimized tables also use completely

different structures for keeping track of the data than are used for disk-based tables, whether

temporary or permanent.

Indexes on memory-optimized tables
Indexes on memory-optimized tables are not stored as traditional B-trees. Memory-optimized tables

support hash indexes, stored as hash tables with linked lists connecting all the rows that hash to the

same value and ‘range’ indexes, which for memory-optimized tables are stored using special BW-trees.

The range index with BW tree can be used to quickly find qualifying rows in a range predicate just like

traditional btree but it is designed with optimistic concurrency control with no locking/latching.

Every memory-optimized table must have at least one index, and must have a declared primary key,

which could then be supported by the required index.

Indexes are never stored on disk, and are not reflected in the on-disk checkpoint files and operations on

indexes are never logged. The indexes are maintained automatically during all modification operations

on memory-optimized tables, just like b-tree indexes on disk-based tables, but in case of a SQL Server

restart, the indexes on the memory-optimized tables are rebuilt as the data is streamed into memory.

Concurrency improvements
When accessing memory-optimized tables, SQL Server implements an optimistic multi-version

concurrency control. Although SQL Server has previously been described as supporting optimistic

concurrency control with the snapshot-based isolation levels introduced in SQL Server 2005, these so-

called optimistic methods do acquire locks during data modification operations. For memory-optimized

tables, there are no locks acquired, and thus no waiting because of blocking. In addition being lock-free,

In-memory OLTP does not use any latches or even spinlocks. Any synchronization between threads that

is absolutely required to maintain consistency (for example, when updating an index pointer) is handled

at the lowest level: a single CPU instruction (interlocked-compare and exchange), which is supported by

all modern 64-bit processors. (For more details about this instruction, please take a look at this article:

https://en.wikipedia.org/wiki/Compare-and-swap).

10

Note that this does not mean that there is no possibility of waiting when using memory-optimized

tables. There may be other wait types encountered, such as waiting for a log write to complete at the

end of a transaction, which can happen for writes to disk-based tables as well. However, logging when

making changes to memory-optimized tables is much more efficient than logging for disk-based tables,

so the wait times will be much shorter. And there never will be any waits for reading data from disk,

and no waits for locks on data rows. (Note that waiting for log writes to complete can be ameliorated

using SQL Server’s “Delayed Durability” option, which you can read about here:

https://msdn.microsoft.com/en-us/library/dn449490.aspx)

Natively Compiled Modules
The best execution performance is obtained when using natively compiled modules with memory-

optimized tables. As of SQL Server 2016, these modules include stored procedures, triggers, user-

defined scalar functions and inline table valued functions. In addition, there are only a few limitations

on the Transact-SQL language constructs that are allowed inside a natively compiled stored module,

compared to the feature set available with interpreted Transact-SQL .

Using In-Memory OLTP
The In-Memory OLTP engine was introduced in SQL Server 2014. Installation of In-Memory OLTP is part

of the SQL Server setup application, as it is just a part of the database engine service. The In-Memory

OLTP components can only be installed with a 64-bit edition of SQL Server, and not available at all with a

32-bit edition.

Creating Databases
Any database that will contain memory-optimized tables needs to have one

MEMORY_OPTIMIZED_DATA filegroup. This filegroup is used for storing the data and delta file pairs

needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating

them is almost the same as for creating a regular filestream filegroup, it must also specify the option

CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a

database that can support memory-optimized tables:

CREATE DATABASE IMDB
 ON
 PRIMARY (NAME = [IMDB_data], FILENAME = 'C:\IMData\IMDB_data.mdf'),
 FILEGROUP IMFG CONTAINS MEMORY_OPTIMIZED_DATA
 (NAME = [IMData_dir], FILENAME = 'C:\IMData\IMData_dir');

It is also possible to add a MEMORY_OPTIMIZED_DATA filegroup to an existing database, and then files

can be added to that filegroup. For example, if you already have the AdventureWorks2014 database, you

can add a filegroup for memory optimized data as shown:

ALTER DATABASE AdventureWorks2014
 ADD FILEGROUP AW_mod CONTAINS MEMORY_OPTIMIZED_DATA;
GO
ALTER DATABASE AdventureWorks2014
 ADD FILE (NAME='AW_mod', FILENAME='C:\IMData \AW_mod_dir')
 TO FILEGROUP AW_mod_mod;
GO

https://msdn.microsoft.com/en-us/library/dn449490.aspx

11

Once a database has a filegroup with the property CONTAINS MEMORY_OPTIMIZED_DATA, and that

filegroup has at least one file in it, you can create memory-optimized tables in that database. The

following query will show you the names of all the databases in an instance of SQL Server that meets

those requirements:

EXEC sp_MSforeachdb 'USE ? IF EXISTS (SELECT 1 FROM sys.filegroups FG
 JOIN sys.database_files F
 ON FG.data_space_id = F.data_space_id
 WHERE FG.type = ''FX'' AND F.type = 2)
 PRINT ''?'' + '' can contain memory-optimized tables.'' ';
GO

Creating Tables
The syntax for creating memory-optimized tables is almost identical to the syntax for creating disk-based

tables, with a few restrictions, as well as a few required extensions. Specifying that the table is a

memory-optimized table is done using the MEMORY_OPTIMIZED = ON clause. A memory-optimized

table can only have columns of these supported datatypes:

 bit

 All integer types: tinyint, smallint, int, bigint

 All money types: money, smallmoney

 All floating types: float, real

 date/time types: datetime, smalldatetime, datetime2, date, time

 numeric and decimal types

 All non-LOB string types: char(n), varchar(n), nchar(n), nvarchar(n), sysname

 Non-LOB binary types: binary(n), varbinary(n)
 Uniqueidentifier

Note that the legacy LOB data types (text, ntext and image) are not allowed; also there can be no
columns of type XML, or CLR or the max data types. as of SQL Server 2016 CTP3. In addition, row lengths
are limited to 8060 bytes with no off-row (row-overflow) data. In fact, the 8060 byte limit is enforced at
table-creation time, so unlike a disk-based table, a memory-optimized tables with two varchar(5000)
columns could not be created.

A memory-optimized table can be defined with one of two DURABILITY values: SCHEMA_AND_DATA or

SCHEMA_ONLY with the former being the default. A memory-optimized table defined with

DURABILITY=SCHEMA_ONLY, which means that changes to the table’s data are not logged and the data

in the table is not persisted on disk. However, the schema is persisted as part of the database metadata,

so the empty table will be available after the database is recovered during a SQL Server restart.

As mentioned earlier, a memory-optimized table must always have at least one index but this

requirement could be satisfied with the index created automatically to support a primary key constraint.

All tables except for those created with the SCHEMA_ONLY option must have a declared primary key.

The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count

must also be specified. A few guidelines for choosing a value for the bucket count will be mentioned

when discussing details of hash index storage.

12

Single-column indexes may be created in line with the column definition in the CREATE TABLE

statement, as shown below. The BUCKET_COUNT attribute will be discussed in the section on Hash

Indexes.

CREATE TABLE T1
(
 [Name] varchar(32) not null PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 131072),
 [City] varchar(32) null,
 [State_Province] varchar(32) null,
 [LastModified] datetime not null,

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

Alternatively, composite indexes may be created after all the columns have been defined, as in the

example below. The example below adds a range index to definition above. Notice the difference in the

specification for the two types of indexes is that one uses the keyword HASH, and the other doesn’t.

Both types of indexes are specified as NONCLUSTERED, but if the word HASH is not used, the index is a

range index.

CREATE TABLE T2
(
 [Name] varchar(32) not null PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 131072),
 [City] varchar(32) null,
 [State_Province] varchar(32) null,
 [LastModified] datetime not null,

 INDEX T1_ndx_c2c3 NONCLUSTERED ([City],[State_Province])

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

When a memory-optimized table is created, the In-Memory OLTP engine will generate and compile DML

routines just for accessing that table, and load the routines as DLLs. SQL Server itself does not perform

the actual data manipulation (record cracking) on memory-optimized tables, instead it calls the

appropriate DLL for the required operation when a memory-optimized table is accessed.

There are only a few limitations when creating memory-optimized tables, in addition to the data type

limitations already listed.

 DML triggers must be created as natively compiled modules

 FOREIGN KEY constraints must reference a PRIMARY KEY constraint (not a UNIQUE constraint)

 IDENTITY columns can only be defined with SEED and INCREMENT of 1

 No UNIQUE indexes other than for the PRIMARY KEY

 A maximum of 8 indexes, including the index supporting the PRIMARY KEY

As of SQL Server 2016, ALTER TABLE can be used on memory-optimized tables to add and drop columns,

as well as to add and drop indexes or constraints, or alter columns or indexes. (A few examples will be

shown below in the section on ALTER INDEX.) Be aware that these operations will always require a

complete rebuild of the table, and every row will be logged as it is inserted into the new table. One

benefit of using the ALTER TABLE instead of manually dropping and recreating the table is that if there

are dependent objects schema bound to a memory-optimized table they will not have to be dropped

and recreated.

13

Note Prior to SQL Server 2016, for an index to be created on a character column in a

memory-optimized table, the column would have to have been created with a binary

(BIN) collation. The collation could have been specified in the CREATE TABLE statement,

or the database could have been created to use a BIN collation for all character

columns. As of SQL Server 2016, this restriction no longer applies. The CREATE TABLE

statements above create indexes on the Name column which does not specify a BIN

collation.

The catalog view sys.tables contains metadata about each of your memory-optimized tables. The

column is_memory_optimized is a Boolean value, with a 1 indicating a memory-optimized table. The

durability column is translated by the durability_desc column, which has values SCHEMA_ONLY and

SCHEMA_AND_DATA. The following query will show you your memory-optimized tables and their

durability:

SELECT name, durability_desc FROM sys.tables
WHERE is_memory_optimized = 1;

Table Types and Table Variables

In addition to creating memory-optimized tables, SQL Server 2016 allows you to create memory-

optimized table types. The biggest benefit of memory-optimized table types is the ability to use it when

declaring a table variable as shown here:

USE IMDB;
CREATE TYPE SalesOrderDetailType_inmem
AS TABLE
(
 OrderQty smallint NOT NULL,
 ProductID int NOT NULL,
 SpecialOfferID int NOT NULL,
 LocalID int NOT NULL,

 INDEX IX_ProductID NONCLUSTERED HASH (ProductID) WITH (BUCKET_COUNT = 131072),
 INDEX IX_SpecialOfferID NONCLUSTERED (SpecialOfferID)
)
WITH (MEMORY_OPTIMIZED = ON);
GO
DECLARE @SalesDetail SalesOrderDetailType_inmem;
GO

Memory-optimized table variables can give you the following advantages when compared to disk-based

table variables:

 The variables are only stored in memory. Data access is more efficient because memory-

optimized table type use the same data structures used for memory-optimized tables. The

efficientcy is increased further when the memory-optimized table variable is used in a natively

compiled module.

 Table variables are not stored in tempdb and do not use any resources in tempdb.

14

Row and Index Storage
In-Memory OLTP memory-optimized tables and their indexes are stored very differently than disk-based

tables. Memory-optimized tables are not stored on pages like disk-based tables, nor is space allocated

from extents, and this is due to the design principle of optimizing for byte-addressable memory instead

of block-addressable disk.

Rows
Rows are allocated from structures called heaps, which are different than the type of heaps SQL Server

has supported for disk-based tables. Rows for a single table are not necessarily stored near other rows

from the same table. The rows themselves have a structure very different than the row structures used

for disk-based tables. Each row consists of a header and a payload containing the row attributes.

Figure 2 shows this structure, as well as expanding on the content of the header area.

Figure 2 The structure of a row in a memory-optimized table

Row header

The header contains two 8-byte fields holding In-Memory OLTP timestamps: a Begin-Ts and an End-Ts.

Every database that supports memory-optimized tables manages two internal counters that are used to

generate these timestamps.

 The Transaction-ID counter is a global, unique value that is reset when the SQL Server instance is

restarted. It is incremented every time a new transaction starts.

 The Global Transaction Timestamp is also global and unique, but is not reset on a restart. This

value is incremented each time a transaction ends and begins validation processing. The new

value is then the timestamp for the current transaction. The Global Transaction Timestamp

value is initialized during recovery with the highest transaction timestamp found among the

recovered records. (We’ll see more about recovery later in this paper.)

The value of Begin-Ts is the timestamp of the transaction that inserted the row, and the End-Ts value is

the timestamp for the transaction that deleted the row. A special value (referred to as ‘infinity’) is used

as the End-Ts value for rows that have not been deleted. However, when a row is first inserted, before

the insert transaction is completed, the transaction’s timestamp is not known so the global

 Row header
 Payload

 Begin Ts End Ts StmtId IdxLinkCount

8 bytes 8 bytes 4 bytes 2 bytes

8 bytes * (Number of indexes)

15

Transaction_ID value is used for Begin-Ts until the transaction commits. At this time, the row is not

visible to any other transactions. Similarly, for a delete operation, the transaction timestamp is not

known, so the End-Ts value for the deleted rows uses the global Transaction_ID value, which is replaced

once the real Transaction Timestamp is known. Until the transaction commits, the row will still be

visible, as it will not yet have been actually deleted. As we’ll see when discussing data operations, once

the transaction commits, the Begin-Ts and End-Ts values determine which other transactions will be

able to see this row.

The header also contains a four-byte statement ID value. Every statement within a transaction has a

unique StmtId value, and when a row is created it stores the StmtId for the statement that created the

row. If the same row is then accessed again by the same statement, it can be skipped. For example, an

UPDATE statement will not update rows written by itself. Thhe StmtId is used to enforce Halloween

Protection. (Describing this behavior in detail is beyond the scope of this paper, but there are many

articles and blog posts you can find online about “The Halloween Problem” and “Halloween

Protection”.)

Finally, the header contains a two-byte value (idxLinkCount) which is really a reference count indicating

how many indexes reference this row. Following the idxLinkCount value is a set of index pointers, which

will be described in the next section. The number of pointers is equal to the number of indexes. The

reference value of 1 that a row starts with is needed so the row can be referenced by the garbage

collection (GC) mechanism even if the row is no longer connected to any indexes. The GC is considered

the ‘owner’ of the initial reference.

Payload area

The payload is the row itself, containing the key columns plus all the other columns in the row. (So this

means that all indexes on a memory-optimized table are actually covering indexes (i.e. the leaf node has

all the columns from the table.) The payload format can vary depending on the table. As mentioned

earlier in the section on creating tables, the In-Memory OLTP compiler generates the DLLs for table

operations, and because it knows the payload format used when inserting rows into a table, it can also

generate the appropriate commands for all row operations.

Indexes On Memory-Optimized Tables
All memory-optimized tables must have at least one index, because it is the indexes that connect the

rows together. As mentioned earlier, data rows are not stored on pages, so there is no collection of

pages or extents, no partitions or allocation units, that can be referenced to get all the pages for a table.

There is some concept of index pages for one of the types of indexes, but they are stored differently

than indexes for disk-based tables.

In-Memory OLTP indexes, and changes made to them during data manipulation, are never written to

disk. Only the data rows, and changes to the data, are written to the transaction log. All indexes on

memory-optimized tables are created based on the index definitions during database recovery. We’ll

cover details of in the Checkpoint and Recovery section below.

Hash Indexes

A hash index consists of an array of pointers, and each element of the array is called a hash bucket. The

index key column in each row has a hash function applied to it, and the result of the function determines

16

which bucket is used for that row. All key values that hash to the same value (have the same result from

the hash function) are accessed from the same pointer in the hash index and are linked together in a

chain. When a row is added to the table, the hash function is applied to the index key value in the row.

If there is duplication of key values, the duplicates will always generate the same function result and

thus will always be in the same chain.

Figure 3 shows one row in a hash index on a name column. For this example, assume there is a very

simple hash function that results in a value equal to the length of the string in the index key column. The

first value of ‘Jane’ will then hash to 4, which is the first bucket in the hash index so far. (Note that the

real hash function is much more random and unpredictable, but I am using the length example to make

it easier to illustrate.) You can see the pointer from the 4 entry in the hash table to the row with Jane.

That row doesn’t point to any other rows, so the index pointer in the record is NULL.

Figure 3 A hash index with a single row

In Figure 4, a row with a name value of Greg has been added to the table. Since we’ll assume that Greg

also maps to 4, it hashes to the same bucket as Jane, and the row is linked into the same chain as the

row for Jane. The Greg row has a pointer to the Jane row.

17

Figure 4 A hash index with two rows

A second hash index included in the table definition on the City column creates a second pointer field.

Each row in the table now has two pointers pointing to it, and the ability to point to two more rows, one

for each index. The first pointer in each row points to the next value in the chain for the Name index; the

second pointer points to the next value in the chain for the City index. Figure 5 shows the same hash

index on Name, this time with three rows that hash to 4, and two rows that hash to 5, which uses the

second bucket in the Name index. The second index on the City column uses three buckets. The bucket

for 6 has three values in the chain, the bucket for 7 has one value in the chain, and the bucket for 8 also

has one value.

Figure 5 Two hash indexes on the same table

When a hash index is created, you must specify a number of buckets, as shown in the CREATE TABLE

example above. It is recommended that you choose a number of buckets that is one to two times the

18

expected cardinality (the number of unique values) of the index key column so that there will be a

greater likelihood that each bucket will only have rows with a single value in its chain. Be careful not to

choose a number that is too big however, because each bucket uses 8 bytes of memory. The number

you supply is rounded up to the next power of two, so a value of 1,000,000 will be rounded up to

1,048,576 buckets, or 8 MB of memory space. Having extra buckets will not improve performance but

will simply waste memory and possible reduce the performance of scans which will have to check each

bucket for rows. However, it is generally better to have too many buckets than too few.

When deciding to build a hash index, keep in mind that the hash function actually used is based on ALL

the key columns. This means that if you have a hash index on the columns: lastname, firstname in an

employees table, a row with the values “Harrison” and “Josh” will probably hash to a different bucket

than a row with the values “Harrison” and “John”. A query that just supplies a lastname value, or one

with an inexact firstname value (such as “Jo%”) will not be able to use the index at all.

Range Indexes

If you have no idea of the number of buckets you’ll need for a particular column, or if you know you’ll be

searching your data based on a range of values, you should consider creating a range index instead of a

hash index. Range indexes are implemented using a new data structure called a Bw-tree, originally

envisioned and described by Microsoft Research in 2011. A Bw-tree is a lock- and latch-free variation of

a B-tree.

The general structure of a Bw-tree is similar to SQL Server’s regular B-trees, except that the index pages

are not a fixed size, and once they are built they are unchangeable. Like a regular B-tree page, each

index page contains a set of ordered key values, and for each value there is a corresponding pointer. At

the upper levels of the index, on what are called the internal pages, the pointers point to an index page

at the next level of the tree, and at the leaf level, the pointers point to a data row. Just like for In-

Memory OLTP hash indexes, multiple data rows can be linked together. In the case of range indexes,

rows that have the same value for the index key will be linked.

One big difference between Bw-trees and SQL Server’s B-trees is that a page pointer is a logical page ID

(PID), instead of a physical page number. The PID indicates a position in a mapping table, which

connects each PID with a physical memory address. Index pages are never updated; instead, they are

replaced with a new page and the mapping table is updated so that the same PID indicates a new

physical memory address.

Figure 6 shows the general structure of Bw-tree, plus the Page Mapping Table.

19

Figure 6 The general structure of a Bw-Tree

Not all the PID values are indicated in Figure 6, and the Mapping Table does not show all the PID values

that are in use. The index pages are showing key values for this index. Each index row in the internal

index pages contains a key value (shown) and a PID of a page at the next level down. The key value is the

highest value possible on the page referenced. (Note this is different than a regular B-tree index, for

which the index rows stores the minimum value on the page at the next level down.)

The leaf level index pages also contain key values, but instead of a PID, they contain an actual memory

address of a data row, which could be the first in a chain of data rows, all with the same key value. (You

can note another difference compared to regular B-tree indexes in that the leaf pages will not contain

duplicates in the Bw-Tree. If a key value occurs multiple times in the data, there will a chain of rows

pointed to by the entry in the leaf.)

Another big difference between Bw-trees and SQL Server’s B-trees is that at the leaf level, data changes

are kept track of using a set of delta values. The leaf pages themselves are not replaced for every

change. Each update to a page, which can be an insert or delete of a key value on that page, produces a

page containing a delta record indicating the change that was made. An update is represented by two

new delta records, one for the delete of the original value, and one for the insert of the new value.

When each delta record is added, the mapping table is updated with the physical address of the page

containing the newly added delta record. Figure 7 illustrates this behavior. The mapping table is

showing only a single page with logical address P. The physical address in the mapping table originally

was the memory address of the corresponding leaf level index page, shown as Page P. After a new row

with index key value 50 (which we’ll assume did not already occur in the table’s data) is added to the

table, In-Memory OLTP adds the delta record to Page P, indicating the insert of the new key, and the

physical address of page P is updated to indicate the address of the first delta record page. Assume then

that the only row with index key value 48 is deleted from the table. In-Memory OLTP must then remove

the index row with key 48, so another delta record is created, and the physical address for page P is

updated once again.

20

Figure 7 Delta records linked to a leaf level index page

When searching through a range index, SQL Server must combine the delta records with the base page,

making the search operation a bit more expensive. However, not having to completely replace the leaf

page for every change gives us a performance savings. As we'll see in the later section, Consolidating

Delta Records, eventually SQL Server will combine the original page and chain of delta pages into a new

base page.

Index page structures

In-Memory OLTP range index pages are not a fixed size as they are for indexes on disk-based tables,

although the maximum index page size is still 8 KB.

Range index pages for memory-optimized tables all have a header area which contains the following

information:

 PID - the pointer into the mapping table

 Page Type - leaf, internal, delta or special

 Right PID - the PID of the page to the right of the current page

 Height – the vertical distance from the current page to the leaf

 Page statistics – the count of delta records plus the count of records on the page

 Max Key – the upper limit of values on the page

In addition, both leaf and internal pages contains two or three fixed length arrays:

 Values – this is really a pointer array. Each entry in the array is 8 bytes long. For internal pages

the entry contains PID of a page at the next level and for a leaf page, the entry contains the

memory address for the first row in a chain of rows having equal key values. (Note that

technically, the PID could be stored in 4 bytes, but to allow the same values structure to be used

for all index pages, the array allows 8 bytes per entry.)

 Offsets – this array exists only for pages of indexes with variable length keys. Each entry is 2

bytes and contains the offset where the corresponding key starts in the key array on the page.

21

 Keys – this is the array of key values. If the current page is an internal page, the key represents

the first value on the page referenced by the PID. If the current page is a leaf page, the key is the

value in the chain of rows.

The smallest pages are typically the delta pages, which have a header which contains most of the same

information as in an internal or leaf page. However delta page headers don’t have the arrays described

for leaf or internal pages. A delta page only contains an operation code (insert or delete) and a value,

which is the memory address of the first row in a chain of records. Finally, the delta page will also

contain the key value for the current delta operation. In effect you can think of a delta page as being a

mini-index page holding a single element whereas the regular index pages store an array of N elements.

Bw-tree internal reorganization operations

There are three different operations that SQL Server might need to perform while managing the

structure of a Bw-tree: consolidation, split and merge. For all of these operations, no changes are made

to existing index pages. Changes may be made to the mapping table to update the physical address

corresponding to a PID value. If an index page needs to add a new row (or have a row removed) a whole

new page is created and the PID values are updated in the Mapping Table.

Consolidating delta records

A long chain of delta records can eventually degrade search performance, if SQL Server has to consider

the changes in the delta records along with the contents of the index pages when it’s searching through

an index. If In-Memory OLTP attempts to add a new delta record to a chain that already has 16

elements, the changes in the delta records will be consolidated into the referenced index page, and the

page will then be rebuilt, including the changes indicated by the new delta record that triggered the

consolidation. The newly rebuilt page will have the same PID but a new memory address. The old pages

(index page plus delta pages) will be marked for garbage collection.

Splitting of a full index page

An index page in Bw-Tree grows on an as-needed basis, starting from storing a single row to storing a

maximum of 8K bytes. Once the index page grows to 8K bytes, a new insert of a single row will cause the

index page to split. For an internal page, this means when there is no more room to add another key

value and pointer, and for a leaf page, it means that the row would be too big to fit on the page once all

the delta records are incorporated.

The statistics information in the page header for a leaf page keeps track of how much space would be

required to consolidate the delta records, and that information is adjusted as each new delta record is

added. The easiest way to visualize how a page split occurs is to walk through an example. Figure 8

shows a representation of the original structure, where Ps is the page to be split into pages P1 and P2,

and the Pp is its parent page, with a row that points to Ps. Keep in mind that a split can happen at any

level of an index, so it not specified whether Ps is a leaf page or an internal page. It could be either.

22

Figure 8: Attempting to insert a new row into a full index page.

Assume we have executed an INSERT statement that inserts a row with key value of 5 into this table,

so that 5 now needs to be added to the range index. The first entry in Page Pp is a 5, which means 5 is

the maximum value that could occur on the page to which Pp points, which is Ps. Page Ps doesn't

currently have a value 5, but page Ps is where the 5 belongs. However, the Page Ps is full that it is unable

to add the key value 5 to the page, so it has to split.

The split operation occurs in two atomic steps, as described in the next two sections.

Step 1: Allocate new pages, split the rows

Step1 allocates two new pages, P1 and P2, and splits the rows from page Ps onto these pages, including

the newly inserted row. A new slot in the Page Mapping table stores the physical address of page P2.

These pages, P1 and P2 are not yet accessible to any concurrent operations and those will see the

original page Ps. In addition, the 'logical' pointer from P1to P2 is set. Figure 9 shows the changes, where

P1 contains key values 1 thru 3 and P2 contains key values 4 and 5.

Figure 9: Splitting a full index page into two pages.

In the same atomic operation as splitting the page, SQL Server updates the Page Mapping Table to

change the pointer to point to P1 instead of Ps. After this operation, Page Pp points directly to Page P1;

there is no pointer to page Ps, as shown in Figure 10.

23

Figure 10: The pointer from the parent points to the first new child page.

Step 2: Create a new Pointer

Eventually, all pages should be directly accessible from the higher level but for a brief period, after Step

1, the parent page Pp points to P1 but there is no direct pointer from Pp to page P2, although P2 contains the

highest value that exists on P2, which is 5 . P2 can be reached only via page P1.

To create a pointer from Pp to page P2, SQL Server allocates a new parent page Ppp, copies into it all the

rows from page Pp, adds a new row to point to page P1, which holds the maximum key value of the rows

on P1 which is 3, as shown in Figure 11.

Figure 4-10: A new parent page is created.

In the same atomic operation as creating the new pointer, SQL Server then updates the Page Mapping

Table to change the pointer from Pp to Ppp, as shown in Figure 12.

Figure 12: After the split is complete.

24

Merging of adjacent index pages

When a DELETE operation leaves an index page P with less than 10% of the maximum page size

(currently 8K), or with a single row on it, SQL Server will merge page P with its neighboring page. When a

row is deleted from page P, SQL Server adds a new delta record for the delete, as usual, and then checks

to see if the remaining space after deleting the row will be less than 10% of maximum page size. If it will

be then Page P qualifies for a Merge operation.

Again, to illustrate how this works, we'll walk through a simple example, which assumes we'll be

merging a page P with its left neighbor, Page Pln, that is, one with smaller values.

Figure 13 shows a representation of the original structure where page Pp, the parent page, contains a

row that points to page P. Page Pln has a maximum key value of 8, meaning that the row in Page Pp that

points to page Pln contains the value 8. We will delete from page P the row with key value 10, leaving

only one row remaining, with the key value 9.

Figure 13: Index pages prior to deleting row 10.

The merge operation occurs in three atomic steps, as described over the following sections.

Step 1: Create New Delta pages for delete

SQL Server creates a delta page, DP10, representing key value 10 and its pointer is set to point to Page P.

Additionally, SQL Server creates a special 'merge-delta page', DPm, and links it to point to DP10. At this

stage, neither DP10 nor DPm are visible to any concurrent transactions.

In the same atomic step, SQL Server updates the pointer to page P in the Page Mapping Table is to point

to DPm. After this step, the entry for key value 10 in parent page Pp now points to DPm.

Figure 14: The delta page and the merge-delta page are added to indicate a deletion.

25

Step 2: Create a new non-leaf page with correct index entries

In step 2, SQL Server removes the row with key value 8 in page Pp (since 8 will no longer be the high

value on any page) and updates the entry for key value 10 (DP10) to point to page Pln. To do this, it

allocates a new non-leaf page, Pp2, and copies to it all the rows from Pp except for the row representing

key value 8.

Once this is done, in the same atomic step, SQL Server updates the page mapping table entry pointing to

page Pp to point to page Pp2. Page Pp is no longer reachable. This is shown in Figure 15.

Figure 15: Pointers are adjusted to get ready for the merge.

Step 3: Merge pages, remove deltas

In the final step, SQL Server merges the leaf pages P and Pln and removes the delta pages. To do this, it

allocates a new page, Pnew, merges the rows from P and Pln, and includes the delta page changes in the

new Pnew. Finally, in the same atomic operation, SQL Server updates the page mapping table entry

currently pointing to page Pln so that it now points to page Pnew. At this point, the new page, as shown in

Figure 16, is available to any concurrent transactions.

Figure 16: After the merge is completed.

 Columnstore Indexes

In SQL Server 2012 in which columnstore indexes were introduced, and SQL Server 2014, in which

updateable clustered columnstore indexes were added, these indexes were intended for analytics,

including reports and analysis. In-memory OLTP, on the other hand, as the name ‘OLTP’ implies, was

intended for operational data that was very quickly growing and changing. However, in many systems

26

the line is blurred as to what data is operational and what is for analytics and the same data needs to be

available for both purposes. Instead of bending each solution (columnstore indexes and memory-

optimized tables) to do what they are not designed to do, that is, to force memory-optimized tables to

be better with analytic queries and columnstore indexes to be better with OLTP data modification – and

eventually end up with half-baked solutions, SQL Server 2016 provides a solution that leverages both

technologies in their own strength and hide the seams and storage details from the users.

Columnstore Index Basic Architecture

Because SQL Server 2016 provides support for building clustered columnstore indexes on memory-

optimized tables, this paper will provide a high-level overview of columnstore index architecture. It is

beyond the scope of this document to discuss all the details of columnstore indexes, but a basic

understanding of columnstore index storage will be useful to understand the special considerations for

columnstore indexes on memory-optimized tables.

Columnstore indexes, which are typically wide composite indexes, are not organized as rows, but as

columns. Rows from a single partition are grouped in row groups of about one million rows each. (The

actual maximum is 220 or 1,048,576 rows per group.) SQL Server will attempt to put the full 220 values in

each row group, leaving a final row group with whatever leftover rows there are. For example, if there

are exactly 10 million rows in a table, each column in a columnstore index could have 9 segments of

1,048,576 values and one of 562,816 values. However, because the index is usually built in parallel, with

each thread processing its own subset of rows, there may be multiple row groups with fewer than the

full 1,048,576 values.

. Within each row group, SQL Server applies its Vertipaq compression technology which encodes the

values and then rearranges the rows within the rowgroup to give the best compression results. Each

index column in each row group is stored separately, in a structure called a segment. Each segment is

stored as a Large Object (LOB) value, and stored in LOB allocation unit for the partition. Segments are

the basic unit of manipulation and can be read and written separately. Figure 17 illustrates the encoding

and conversion of a set of values for multiple index columns into several segments.

27

 Figure 17. Transforming columnstore index columns into segments

The table in Figure 17 has been divided into three row groups where all four columns from the table are

defined as part of the columnstore index. We end up with 12 compressed column segments, three

segments for each of the four columns..

The compressed row groups for a clustered columnstore index on a memory-optimized table are stored

separately from the rows accessible from the memory-optimized nonclustered indexes described above

(the hash and range indexes) and are basically a copy of the data. All segments are all fully resident in

memory at all all times. For recovery purposes, each rowgroup of the clustered columnstore index is

stored in a separate file in the memory-optimized filegroup, with a type of LARGE DATA. These files are

discussed below in the section on CHECKPOINT FILES. As new rows are added to a memory-optimized

table with a columnstore index, they are not immediately added to the compressed rowgroups of the

columnstore index; instead, the new rows are considered the ‘tail’ of the memory-optimized table and

are only available as regular rows accessible through any of the other memory-optimized table’s

indexes.

If a SQL Server 2016 memory-optimized table has a clustered columnstore index, new rows will be

allocated from a specific memory allocator. This allows SQL Server to quickly identify the rows that are

not yet compressed into segments in the columnstore index. These rows become eligible for

compression if they have not been modified for one hour. A background thread wakes up every 2

28

minutes and examines the rows that have not been modified for one hour. If the count of such rows

exceeds 1 million, the thread performs the following two operations: when

1. The rows are copied into one or more rowgroups, from which each of the segments will

compressed and encoded to become part of the clustered columnstore index.

2. The rows will be moved from the special memory allocator to the regular memory storage

with the rest of the rows from the table.

Index Metadata

Index metadata is available in several catalog views and DMVs. The sys.indexes view contains one row

for each index on each memory-optimized table. The type column will have one of the following values

for the indexes on a memory-optimized table:

Type 2: Nonclustered (range)

Type 5: Clustered columnstore

Type 7: Nonclustered hash

The following query will show you all your indexes on your memory-optimized tables:

SELECT t.name AS table_name, i.name AS index_name, index_id, i.type, i.type_desc
FROM sys.tables t JOIN sys.indexes i
 ON t.object_id = i.object_id
WHERE is_memory_optimized = 1;
GO

In addition, the view sys.hash_indexes, which contains all the columns from sys.indexes, but only the

rows where type = 7, has one additional column: bucket_count.

Storage space used by your memory-optimized tables and their indexes is shown in the DMV

sys.dm_db_xtp_table_memory_stats. The following query lists each memory-optimized table and the

space used.

SELECT object_name(object_id) AS 'Object name', *
FROM sys.dm_db_xtp_table_memory_stats;
GO

Other DMVs will be described later, as they become relevant to the topics discussed.

Altering Indexes

As of SQL Server 2016, ALTER TABLE can be used to add and drop indexes, add and drop constraints and

change the number of hash buckets in a hash index. It can also be used to add,r drop or alter columns

from a memory-optimized table. Each ALTER TABLE will require a complete rebuild of the table, even if

you’re just changing the number of buckets in a hash index, so you’ll need to make sure you have

sufficient memory available before running this command. As the table is being rebuilt, each row will be

reinserted into the new table, and will be logged as a separate INSERT. In addition, the table will be

unavailable while the ALTER operation is being performed. If multiple changes need to be made to the

29

indexes of a single table, it is recommended that you include them all in a single ALTER TABLE command

wherever possible, so that the table will only need to be rebuilt once.

Here are some code examples illustrating the SQL Server 2016 ALTER TABLE operations on memory-

optimized table:

USE IMDB
GO

IF object_id('dbo.OrderDetails') IS NOT NULL
 DROP TABLE dbo.OrderDetails;
GO

-- create a simple table
CREATE TABLE dbo.OrderDetails
(
 OrderID int NOT NULL,
 ProductID int NOT NULL,
 UnitPrice money NOT NULL,
 Quantity smallint NOT NULL,
 Discount real NOT NULL

 INDEX IX_OrderID NONCLUSTERED HASH (OrderID) WITH (BUCKET_COUNT = 1048576),
 INDEX IX_ProductID NONCLUSTERED HASH (ProductID) WITH (BUCKET_COUNT = 131072),
 CONSTRAINT PK_Order_Details PRIMARY KEY
 NONCLUSTERED HASH (OrderID, ProductID) WITH (BUCKET_COUNT = 1048576)
) WITH (MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA);

GO

-- index operations

-- change hash index bucket count
ALTER TABLE dbo.OrderDetails
 ALTER INDEX IX_OrderID
 REBUILD WITH (BUCKET_COUNT=2097152);
GO

-- add index
ALTER TABLE dbo.OrderDetails
 ADD INDEX IX_UnitPrice NONCLUSTERED (UnitPrice);
GO

-- drop index
ALTER TABLE dbo.OrderDetails
 DROP INDEX IX_UnitPrice;
GO

-- combine
ALTER TABLE dbo.OrderDetails
 ADD INDEX IX_UnitPrice NONCLUSTERED (UnitPrice),
 INDEX IX_Quantity NONCLUSTERED HASH (Quantity) WITH (BUCKET_COUNT = 131072);
GO

-- Add a new column

ALTER TABLE dbo.OrderDetails
 ADD ModifiedDate datetime;
GO

-- Drop a column
ALTER TABLE dbo.OrderDetails
 DROP COLUMN Discount;
GO

Data Operations
SQL Server In-Memory OLTP determines what row versions are visible to what transactions by

maintaining an internal Transaction ID that serves the purpose of a timestamp, and will be referred to as

a timestamp in this discussion. The timestamps are generated by a monotonically increasing counter

which increases every time a transaction commits. A transaction’s start time is the highest timestamp in

the database at the time the transaction starts, and when the transaction commits, it generates a new

30

timestamp which then uniquely identifies that transaction. Timestamps are used to specify the

following:

 Commit/End Time: every transaction that modifies data commits at a distinct point in time
called the commit or end timestamp of the transaction. The commit time effectively identifies
a transaction’s location in the serialization history.

 Valid Time for a version of a record: As shown in Figure 2, all records in the database contain
two timestamps –the begin timestamp (Begin-Ts) and the end timestamp (End-Ts). The begin
timestamp denotes the commit time of the transaction that created the version and the end
timestamp denotes the commit timestamp of the transaction that deleted the version (and
perhaps replaced it with a new version). The valid time for a record version denotes the range
of timestamps where the version is visible to other transactions. In Figure 5, Susan’s record is
updated at time “90” from Vienna to Bogota as an example.

Logical Read Time: the read time can be any value between the transaction’s begin time and
the current time. Only versions whose valid time overlaps the logical read time are visible to the
read. For all isolation levels other than read-committed, the logical read time of a transaction
corresponds to the start of the transaction

The notion of version visibility is fundamental to proper concurrency control in In-Memory OLTP. A

transaction executing with logical read time RT must only see versions whose begin timestamp is less

than RT and whose end timestamp is greater than RT.

Isolation Levels Allowed with Memory-Optimized Tables

Data operations on memory-optimized tables always use optimistic multi version concurrency control

(MVCC). Optimistic data access does not use locking or latching to provide transaction isolation. We’ll

look at the details of how this lock and latch free behavior is managed, as well as details on the reasons

for the allowed transaction isolation levels in a later section. In this section, we’ll only be discussing the

details of transaction isolation level necessary to understand the basics of data access and modification

operations.

The following isolation levels are supported for transactions accessing memory-optimized tables.

 SNAPSHOT
 REPEATABLE READ
 SERIALIZABLE

The transaction isolation level must be specified as part of the ATOMIC block of a natively compiled
stored procedure. When accessing memory-optimized tables from interpreted Transact-SQL, the
isolation level should be specified using table-level hints or a new database option called
MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT. This option will be discussed later, after we have looked
at isolation levels for accessing memory-optimized tables.

The isolation level READ COMMITTED is supported for memory optimized tables with autocommit
(single statement) transactions. It is not supported with explicit or implicit user transactions. (Implicit
transactions are those invoked under the session option IMPLICIT_TRANSACTIONS. In this mode,
behavior is the same as for an explicit transaction, but no BEGIN TRANSACTION statement is required.
Any DML statement will start a transaction, and the transaction must be explicitly either committed or
rolled back. Only the BEGIN TRANSACTION is implicit.) Isolation level READ_COMMITTED_SNAPSHOT is
supported for memory-optimized tables with autocommit transactions and only if the query does not

31

access any disk-based tables. In addition, transactions that are started using interpreted Transact-SQL
with SNAPSHOT isolation cannot access memory-optimized tables. Transactions that are started using
interpreted Transact-SQL with either REPEATABLE READ or SERIALIZABLE isolation must access memory-
optimized tables using SNAPSHOT isolation.

Given the in-memory structures for rows previously described, let’s now look at how DML operations

are performed by walking through an example. We will indicate rows by listing the contents in order, in

angle brackets. Assume we have a transaction TX1 with transaction ID 100 running at SERIALIZABLE

isolation level that starts at timestamp 240 and performs two operations:

 DELETE the row <Greg , Lisbon>

 UPDATE <Jane, Helsinki> to <Jane, Perth>

Concurrently, two other transactions will read the rows. TX2 is an auto-commit, single statement

SELECT that runs at timestamp 243. TX3 is an explicit transaction that reads a row and then updates

another row based on the value it read in the SELECT; it has a timestamp of 246.

First we’ll look at the data modification transaction. The transaction begins by obtaining a begin

timestamp that indicates when it began relative to the serialization order of the database. In our

example, that timestamp is 240.

While it is operating, transaction TX1 will only be able to access records that have a begin timestamp

less than or equal to 240 and an end timestamp greater than 240.

Deleting

Transaction TX1 first locates <Greg, Lisbon> via one of the indexes. To delete the row, the end

timestamp on the row is set to 100 with an extra flag bit indicating that the value is a transaction ID.

Any other transaction that now attempts to access the row finds that the end timestamp contains a

transaction ID (100) which indicates that the row may have been deleted. It then locates TX1 in the

transaction map and checks if transaction TX1 is still active to determine if the deletion of <Greg ,

Lisbon> has been completed or not.

Updating and Inserting

Next the update of <Jane, Helsinki> is performed by breaking the operation into two separate

operations: DELETE the entire original row, and INSERT a complete new row. This begins by

constructing the new row <Jane, Perth> with begin timestamp 100 containing a flag bit indicating that it

is a transaction ID, and then setting the end timestamp to ∞ (infinity). Any other transaction that

attempts to access the row will need to determine if transaction TX1 is still active to decide whether it

can see <Jane, Perth> or not. Then <Jane, Perth> is inserted by linking it into both indexes. Next <Jane,

Helsinki> is deleted just as described for the DELETE operation in the preceding paragraph. Any other

transaction that attempts to update or delete <Jane, Helsinki> will notice that the end timestamp does

not contain infinity but a transaction ID, conclude that there is write-write conflict, and immediately

abort.

At this point transaction TX1 has completed its operations but not yet committed. Commit processing

begins by obtaining an end timestamp for the transaction. This end timestamp, assume 250 for this

example, identifies the point in the serialization order of the database where this transaction’s updates

32

have logically all occurred. In obtaining this end timestamp, the transaction enters a state called

validation where it performs checks to ensure it that there are no violations of the current isolation

level. If the validation fails, the transaction is aborted. More details about validation are covered

shortly. SQL Server will also write to the transaction log at the end of the validation phase.

Transactions track all of their changes in a write set that is basically a list of delete/insert operations with

pointers to the version associated with each operation. The write set for this transaction, and the

changed rows, are shown in the green box in Figure 18. This write set forms the content of the log for

the transaction. Transactions normally generate only a single log record that contains its ID and commit

timestamp and the versions of all records it deleted or inserted. There will not be separate log records

for each row affected as there are for disk-based tables. However, there is an upper limit on the size of a

log record, and if a transaction on memory-optimized tables exceeds the limit, there can be multiple log

records generated. Once the log record has been hardened to storage the state of the transaction is

changed to committed and post-processing is started.

Post-processing involves iterating over the write set and processing each entry as follows:

 For a DELETE operation, set the row’s end timestamp to the end timestamp of the transaction (in
this case 250) and clear the type flag on the row’s end timestamp field.

 For an INSERT operation, set the affected row’s begin timestamp to the end timestamp of the
transaction (in this case 250) and clear the type flag on the row’s begin timestamp field

The actual unlinking and deletion of old row versions is handled by the garbage collection system, which

will be discussed below.

Figure 18 Transactional Modifications on a table

33

Reading

Now let’s look at the read transactions, TX2 and TX3, which will be processed concurrently with TX1.

Remember that TX1 is deleting the row <Greg , Lisbon> and updating <Jane, Helsinki> to <Jane, Perth> .

TX2 is an autocommit transaction that reads the entire table:

SELECT Name, City
FROM T1

TX2’s session is running in the default isolation level READ COMMITTED, but as described above,

because no hints are specified, and T1 is memory-optimized table, the data will be accessed using

SNAPSHOT isolation. Because TX2 runs at timestamp 243, it will be able to read rows that existed at that

time. It will not be able to access <Greg, Beijing> because that row no longer is valid at timestamp 243.

The row <Greg, Lisbon> will be deleted as of timestamp 250, but it is valid between timestamps 200 and

250, so transaction TX2 can read it. TX2 will also read the <Susan, Bogota> row and the <Jane, Helsinki>

row.

TX3 is an explicit transaction that starts at timestamp 246. It will read one row and update another

based on the value read.

DECLARE @City nvarchar(32);
BEGIN TRAN TX3
 SELECT @City = City
 FROM T1 WITH (REPEATABLEREAD)
 WHERE Name = 'Jane';
 UPDATE T1 WITH (REPEATABLEREAD)
 SET City = @City
 WHERE Name = 'Susan';
COMMIT TRAN -- commits at timestamp 255

In TX3, the SELECT will read the row <Jane, Helsinki> because that row still is accessible as of timestamp

243. It will then update the <Susan, Bogota> row to <Susan, Helsinki>. However, if transaction TX3 tries

to commit after TX1 has committed, SQL Server will detect that the <Jane, Helsinki> row has been

updated by another transaction. This is a violation of the requested REPEATABLE READ isolation, so the

commit will fail and transaction TX3 will roll back. We’ll see more about validation in the next section.

T-SQL Support

Memory-optimized tables can be accessed in two different ways: either through interop, using

interpreted Transact-SQL, or through natively compiled stored procedures.

Interpreted Transact-SQL

When using the interop capability, you will have access to virtually the full Transact-SQL surface area

when working with your memory-optimized tables, but you should not expect the same performance as

when you access memory-optimized tables using natively compiled stored procedures. Interop is the

appropriate choice when running ad hoc queries, or to use while migrating your applications to In-

Memory OLTP, as a step in the migration process, before migrating the most performance critical

procedures. Interpreted Transact-SQL should also be used when you need to access both memory-

optimized tables and disk-based tables.

34

The only Transact-SQL features not supported when accessing memory-optimized tables using interop

are the following:

 TRUNCATE TABLE

 MERGE (when a memory-optimized table is the target)

 Dynamic and keyset cursors (these are automatically degraded to static cursors)

 Cross-database queries

 Cross-database transactions

 Linked servers

 All locking hints: TABLOCK, XLOCK, PAGLOCK, etc. (NOLOCK is supported, but is quietly ignored.)

 Isolation level hints READUNCOMMITTED, READCOMMITTED and READCOMMITTEDLOCK

 Other table hints: IGNORE_CONSTRAINTS, IGNORE_TRIGGERS, NOWAIT, READPAST,
SPATIAL_WINDOW_MAX_CELLS

T-SQL in Natively Compiled Procedures

Natively compiled stored procedures allow you to execute Transact-SQL in the fastest way, which

includes accessing data in memory-optimized tables. There are however, many more limitations on the

Transact-SQL that is allowed in these procedures. There are also limitations on the data types and

collations that can be accessed and processed in natively compiled procedures. Please refer to the

documentation for the full list of supported Transact-SQL statements, data types and operators that are

allowed. In addition, disk-based tables are not allowed to be accessed at all inside natively compiled

stored procedures.

The reason for the restrictions is due to the fact that internally, a separate function must be created for

each operation on each table. Many of the restrictions on Transact-SQL in natively compiled procedures

in SQL Server 2014 have been removed in SQL Server 2016, and more will be rem oved in subsequent

versions. Some of the constructs that are available in natively compiled procedures in SQL Server 2016

that were not available in SQL Server 2014 are the following:

 LEFT and RIGHT OUTER JOIN

 SELECT DISTINCT

 OR and NOT operators

 Subqueries in all clauses of a SELECT statement

 Nested stored procedure calls

 UNION and UNION ALL

 All built-in math functions

 Some security functions

 Scalar user-defined functions

 Inline table-valued functions

 EXECUTE AS CALLER

For the full list of support features in natively compiled procedures please refer to the documentation:

https://msdn.microsoft.com/en-us/library/dn452279.aspx

Garbage Collection of Rows in Memory

Because In-Memory OLTP is a multi-versioning system, your DELETE and UPDATE operations (as well as

aborted INSERT operations) will generate row versions that will eventually become stale, which means

https://msdn.microsoft.com/en-us/library/dn452279.aspx

35

they will no longer be visible to any transaction. These unneeded versions will slow down scans of index

structures and create unused memory that needs to be reclaimed.

The garbage collection process for stale versions in your memory-optimized tables is analogous to the

version store cleanup that SQL Server performs for disk-based tables using one of the snapshot-based

isolation levels. Unlike disk-based tables where row versions are kept in TempDB, the row verisons for

memory-optimized tables are maintained in the in-memory table structures themselves.

To determine which rows can be safely deleted, the system keeps track of the timestamp of the oldest

active transaction running in the system, and uses this value to determine which rows are still

potentially needed. Any rows that are not valid as of this point in time (that is, their end-timestamp is

earlier than this time) are considered stale. Stale rows can be removed and their memory can be

released back to the system.

The garbage collection system is designed to be non-blocking, cooperative, efficient, responsive and

scalable. Of particular interest is the ‘cooperative’ attribute. Although there is a dedicated system thread

for the garbage collection process, user threads actually do most of the work. If a user thread is scanning

an index (and all index access on memory-optimized tables is considered to be scanning) and it comes

across a stale row version, it will unlink that version from the current chain and adjust the pointers. It

will also decrement the reference count in the row header area. In addition, when a user thread

completes a transaction, it then adds information about the transaction to a queue of transactions to be

processed by the garbage collection process. Finally, it picks up one or more work items from a queue

created by the garbage collection thread, and frees the memory used by the rows making up the work

item.

The garbage collection thread goes through queue of completed transactions about once a minute, but

the system can adjust the frequency internally based on the number of completed transactions waiting

to be processed. From each transaction, it determines which rows are stale, and builds work items

made up of a set of rows that are ready for removal.. These work items are distributed across multiple

queues, one for each CPU used by SQL Server. Normally, the work of actually removing the rows from

memory is left to the user threads which process these work items from the queues, but if there is little

user activity, the garbage collection thread itself can remove rows to reclaim system memory.

The DVM sys.dm_db_xtp_index_stats has a row for each index on each memory-optimized table, and

the column rows_expired indicates how many rows have been detected as being stale during scans of

that index. There is also a column called rows_expired_removed that indicates how many rows have

been unlinked from that index. As mentioned above, once rows have been unlinked from all indexes on

a table, it can be removed by the garbage collection thread. So you will not see the

rows_expired_removed value going up until the rows_expired counters have been incremented for every

index on a memory-optimized table.

The following query allows you to observe these values. It joins the sys.dm_db_xtp_index_stats DMV

with the sys.indexes catalog view to be able to return the name of the index.

SELECT name AS 'index_name', s.index_id, scans_started, rows_returned,
 rows_expired, rows_expired_removed
FROM sys.dm_db_xtp_index_stats s JOIN sys.indexes i
 ON s.object_id=i.object_id and s.index_id=i.index_id
WHERE object_id('<memory-optimized table name>') = s.object_id;

36

GO

Depending on your volume of data changes and the rate and which new versions are generated, SQL

Server can be using a substantial amount of memory for old row versions and you’ll need to make sure

that your system has enough memory available. Details about memory management will be covered in

a later section.

Transaction Processing
As mentioned above, all access of data in memory-optimized tables is done using completely optimistic

concurrency control, but multiple transaction isolation levels are still allowed. However, what isolation

levels are allowed in what situations might seem a little confusing and non-intuitive. The isolation levels

we are concerned about are the ones involving a cross-container transaction, which means any

interpreted query that references memory-optimized tables whether executed from an explicit or

implicit transaction or in auto-commit mode. The isolation levels that can be used with your memory-

optimized tables in a cross-container transaction depend on what isolation level the transaction has

defined for the SQL Server transaction. Most of the restrictions have to do with the fact that operations

on disk-based tables and operations on memory-optimized tables each have their own transaction

sequence number, even if they are accessed in the same Transact-SQL transaction. You can think of this

behavior as having two sub-transactions within the larger transaction: one sub-transaction is for the

disk-based tables and one is for the memory-optimized tables.

A DMV that can be useful for monitoring transactions in progress is sys.dm_db_xtp_transactions. You

can think of this view as allowing you to peek into the global transaction table that mentioned earlier.

We’ll be looking at this view in more detail later in this chapter, but we can take a quick look at it now. I

started two simple transactions doing inserts into a memory-optimized table, and then ran the following

query:

SELECT xtp_transaction_id, transaction_id, session_id,
 begin_tsn, end_tsn, state_desc
FROM sys.dm_db_xtp_transactions;
WHERE transaction_id > 0;
GO

My output shows two transactions:

The xtp_transaction_id in the first column is the In-Memory OLTP Transaction-ID, and you can see that

my two transactions have consecutive values. These are very different values than the transaction_id in

the second column, which is the id for the ‘regular’ transaction, that the In-memory OLTP transaction is

a part of. The xtp_transaction_id is the value used as the end-timestamp for records this transaction

37

deletes and the begin-timestamp for rows this transaction inserts, before this transaction commits and

gets timestamp of its own. We can also see that both of these transactions have the same value for

begin_tsn, which is the current timestamp (for the last committed transaction) at the time this

transaction started. There is no value for the end-timestamp because these transactions are still in

progress.

When a transaction is submitted to the In-Memory OLTP engine for processing, it goes through the

following steps:

1. Query processing

When the first statement accessing a memory-optimized table is executed, or when a natively

compiled module starts execution, SQL Server obtains a transaction-id for the Transact-SQL part

of the transaction and a transaction-ID for the In-Memory OLTP portion. If any query tries to

update a row that has already been updated by an active transaction, an ‘update conflict’ error

is generated. Most other isolation level errors are not caught until the validation phase.

Depending on the isolation level, the In-Memory OLTP engine keeps track of a read-set and

write-set, which are sets of pointers to the rows that have been read or written, respectively.

Also depending on the isolation level, it will keep track of a scan-set, which is information about

the predicate used to access a set of records. If the transaction commits, an end-timestamp is

obtained, but the transaction is not really committed until after the validation phase.

2. Validation

The validation phase verifies that the consistency properties for the requested isolation level

have been met. We’ll see more details about validation in a later section, after I have talked

about isolation levels. After the isolation levels behavior is validated, In-Memory OLTP may need

to wait for any commit dependencies, which will also be described shortly. If the transaction

passes the validation phase, after any commit dependencies are gone it is considered really

committed. If the any of the modified tables were created with SCHEMA_AND_DATA, the

changes will be logged. In-Memory OLTP will read the write-set for the transaction to determine

what operations will be logged. There may be waiting for commit dependencies, which are

usually very brief, and there may be waiting for the write to the transaction log. Because logging

for memory-optimized tables is much more efficient that logging for disk-based tables (as we’ll

see in in the section on Logging) these waits can also be very short.

3. Post-processing

The post-processing phase is usually the shortest. If the transaction committed, the begin-

timestamp in all the inserted records is replaced by the actual timestamp of this transaction and

the end-timestamp of all the deleted records is replaced by the actual timestamp. If the

transaction failed or was explicitly rolled back, inserted rows will be marked as garbage and

deleted rows will have their end-timestamp changed back to infinity.

Isolation Levels
First, let me give you a little background on isolation levels in general. This will not be a complete

discussion of isolation levels, which is beyond the scope of this book. Isolation levels can be defined in

terms of the consistency properties that are guaranteed for your transactions. The most important

properties are the following:

38

1. Read Stability. If a transaction T reads some version V1 of a record during its processing, to

achieve Read Stability we must guarantee that V1 is still the version visible to T as of the end of

the transaction; that is, V1 has not been replaced by another committed version V2. Read

Stability be enforced either by acquiring a shared lock on V1 to prevent changes or by validating

that V1 has not been updated before the transaction is committed.

2. Phantom Avoidance. To achieve Phantom Avoidance we must be able to guarantee that a

transaction T’s scans would not return additional new versions added between the time T starts

and the time T commits. Phantom Avoidance can be enforced in two ways: by locking the

scanned part of an index/table or by rescanning before the transaction is committed to check

for new versions.

Once we understand these properties, we can define the transaction isolation levels based on these

properties. The first one listed (SNAPSHOT) does not mention these properties, but the second two do.

 SNAPSHOT

SHAPSHOT isolation level specifies that data read by any statement in a transaction will be the

transactionally consistent version of the data that existed at the start of the transaction. The

transaction can only recognize data modifications that were committed before the start of the

transaction. Data modifications made by other transactions after the start of the current

transaction are not visible to statements executing in the current transaction. The statements in

a transaction get a snapshot of the committed data as it existed at the start of the transaction.

In other words, a transaction running in SNAPSHOT isolation will always see the most recent

committed data as of the start of the transaction.

 REPEATABLE READ

REPEATABLE READ isolation level includes the guarantees given by SNAPSHOT isolation level. In

addition, REPEATABLE READ guarantees Read Stability. For any row that is read by the

transaction, at the time the transaction commits the row has not been changed by any other

transaction. Every read operation in the transaction is repeatable up to the end of the

transaction.

 SERIALIZABLE

SERIALIAZABLE isolation level includes the guarantees given by the REPEATABLE READ isolation

level. In addition, SERIALIZABLE guarantees Phantom Avoidance. The operations in the

transaction have not missed any rows. No phantom rows have appeared between time of the

snapshot and the end of the transaction. Phantom rows match the filter condition of a

SELECT/UPDATE/DELETE. A transaction is serializable if we can guarantee that it would see

exactly the same data if all its reads were repeated at the end of the transaction.

The simplest and most widely used MVCC (multi version concurrency control) method is SNAPSHOT

isolation but SNAPSHOT isolation does not guarantee serializability because reads and writes logically

occur at different times, reads at the beginning of the transaction and writes at the end.

39

Access to disk-based tables also supports READ COMMITTED isolation, which simply guarantees that the

transaction will not read any dirty (uncommitted) data. Access to memory-optimized tables needs to use

one of the three isolation levels mentioned above. Table 1 lists which isolation levels can be used

together in a cross-container transaction. You should also consider that once you have accessed a table

in a cross-container transaction using an isolation level HINT, you should continue to use that same hint

for all subsequent access of the table. Using different isolation levels for the same table (whether a disk-

based table or memory-optimized table) will usually lead to failure of the transaction.

Disk-based tables Memory-optimized tables Recommendations

READ COMMITTED SNAPSHOT This is the baseline combination and
should be used for most situations
using READ COMMITTED for disk-based
tables.

READ COMMITTED REPEATABLE READ /
SERIALIZABLE

This combination can be used during
data migration and for memory-
optimized table access in interop mode
(not in a natively compiled procedure).

REPEATABLE READ /
SERIALIZABLE

SNAPSHOT The access for memory-optimized
tables is only INSERT operations. This
combination can also be useful during
migration and if no concurrent write
operations are being performed on the
memory-optimized tables.

SNAPSHOT - No memory-optimized table access
allowed (see note 1)

REPEATABLE READ /
SERIALIZABLE

REPEATABLE READ /
SERIALIZABLE

This combination is not allowed (see
note 2)

Table 1: Compatible isolation levels in cross-container transactions

Note: For SHAPSHOT Isolation, all operations need to see the versions of the data that

existed as of the beginning of the transaction. For SNAPSHOT transactions, the

beginning of the transaction is considered to be when the first table is accessed. In a

cross-container transaction, however, since the sub-transactions can each start at a

different time, another transaction may have changed data between the start times of

the two sub-transactions. The cross-container transaction then will have no one point in

time that the snapshot is based on.

Note 2: The reason both the sub-transactions (the one on the disk-based tables and the

one on the memory-optimized tables) can’t use REPEATABLE READ or SERIALZABLE is

because the two systems implement the isolation levels in different ways. Imagine you

are running the two cross-container transactions in Table 2. RHk# indicates a row in a

memory-optimized table, and RSql# indicates a row in a disk-based table. Tx1 would

read the row from the memory-optimized table first and no locks would be held, so that

Tx2 could complete and change the two rows. When Tx1 resumed, when it read the

40

row from the disk-based table, it would now have a set of values for the two rows that

could never have existed if the transaction were run in isolation (i.e. if the transaction

were truly serializable.) So this combination is not allowed.

Time Tx1 (SERIALIZBLE) Tx2 (any isolation level)

1 BEGIN SQL/In-Memory sub-transactions

2 Read RHk1

3 BEGIN SQL/In-Memory sub-transactions

4 Read RSql1 and update to RSql2

5 Read RHk1 and update to RHk2

6 COMMIT

7 Read RSql2

Table 2 Two concurrent cross-container transactions

For more details on Isolation Levels, please see the following references:

 http://en.wikipedia.org/wiki/Isolation_(database_systems)

 http://research.microsoft.com/apps/pubs/default.aspx?id=69541

Since SNAPSHOT isolation is probably the most used isolation level with memory-optimized tables, and

is the recommended isolation level in most cases, a new database property is available to automatically

upgrade the isolation to SHAPSHOT for all operations on memory-optimized tables, if the T-SQL

transaction is running in a lower isolation level. Lower levels are READ COMMITTED, which is SQL

Server’s default, and READ UNCOMMITTED, which is not recommended. The code below shows how you

can set this property for the ContosoOLTP database.

ALTER DATABASE ContosoOLTP
SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT ON;

You can verify whether this option has been set in two ways, as shown below, either by inspecting the

sys.databases catalog view or by querying the DATABASEPROPERTYEX function.

SELECT is_memory_optimized_elevate_to_snapshot_on FROM sys.databases
WHERE name = 'ContosoOLTP';
SELECT DATABASEPROPERTYEX('ContosoOLTP',
 'IsMemoryOptimizedElevateToSnapshotEnabled');

Keep in mind that when this option is set to OFF, almost all of your queries accessing memory-optimized

tables will need to use hints to specify the transaction isolation level.

Validation and Post-processing
Prior to the final commit of transactions involving memory-optimized tables, SQL Server performs a

validation step. Because no locks are acquired during data modifications, it is possible that the data

http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://research.microsoft.com/apps/pubs/default.aspx?id=69541

41

changes could result in invalid data based on the requested isolation level. So this phase of the commit

processing makes sure that there is no invalid data.

To help ensure the validation process can be performed efficiently, SQL Server may use the read-set and

scan-set, mentioned earlier in this section, to help verify that no inappropriate changes were made.

Whether or not a read-set or scan-set must be maintained depends on the transactions’ isolation level,

as shown in Table 3

Isolation Level Read-set Scan-set

SNAPSHOT NO NO

REPEATABLE READ YES NO

SERIALIZABLE YES YES
Table 3: Changes monitored in the allowed isolation levels

In addition, the read-set and write-set might also be needed if any of the tables modified in the

transaction have defined constraints that must be validated.

If memory-optimized tables are accessed in SNAPSHOT isolation, the following validation error is

possible when a COMMIT is attempted:

 If the current transaction inserted a row with the same primary key value as a row that was

inserted by another transaction that committed before the current transaction, the following

error will be generated and the transaction will be aborted.

Error 41325: The current transaction failed to commit due to a serializable validation fa
ilure

If memory-optimized tables are accessed in REPEATABLE READ isolation, the following additional

validation error is possible when a COMMIT is attempted:

 If the current transaction has read any row that was then updated by another transaction that

committed before the current transaction, the following error will be generated and the transaction

will be aborted.

Error 41305: The current transaction failed to commit due to a repeatable read
validation failure.

The transaction’s read-set is used to determine if any of the rows read previously have a new version by

the end of the transaction.

Table 4 shows an example of a repeatable read isolation failure.

Time Transaction Tx1
(REPEATABLE READ)

Transaction Tx2
(any isolation level)

1 BEGIN TRAN

2 SELECT City FROM Person
WHERE Name = ‘Jill’

BEGIN TRAN

42

3 UPDATE Person
SET City = ‘Madrid’
WHERE Name = ‘Jill’

4 --- other operations

5 COMMIT TRAN

6 COMMIT TRAN
During validation, error 41305
is generated and Tx1 is rolled
back

Table 4: Transactions resulting in a REPEATABLE READ isolation failure

If memory-optimized tables are accessed in SERIALIZABLE isolation, the following additional validation

errors are possible when a COMMIT is attempted:

 If the current transaction fails to read a valid row that meets the specified filter conditions (due to

deletions by other transactions), or encounters phantoms rows inserted by other transactions that

meet the specified filter conditions, the commit will fail. The transaction needs to be executed as if

there are no concurrent transactions. All actions logically happen at a single serialization point. If

any of these guarantees are violated, error 41325 (shown above) is generated and the

transaction will be aborted.

The transaction’s Scan-set is used to determine if any additional rows now meet the predicate’s

condition.

Table 5 shows an example of a serializable isolation failure.

Time Transaction Tx1
(SERIALIZABLE)

Transaction Tx2
(any isolation level)

1 BEGIN TRAN

2 SELECT Name FROM Person
WHERE City = ‘Perth’

BEGIN TRAN

3 INSERT INTO Person VALUES (‘Charlie’, ‘Perth’)

4 --- other operations

5 COMMIT TRAN

6 COMMIT TRAN
During validation, error 41325
is generated and Tx1 is rolled
back

Table 5:Transactions resulting in a SERIALIZABLE isolation failure

Another isolation level violation that can occur is a write-write conflict. However, as mentioned earlier,

this error is caught during regular processing and not during the validation phase.

Error 41302: The current transaction attempted to update a record in table X that has
been updated since this transaction started. The transaction was aborted.

43

Commit Dependencies

During regular processing, a transaction can read rows written by other transactions that are in the

validation or post-processing phases, but have not yet committed. The rows are visible because the

logical end time of those other transactions has been assigned at the start of the validation phase. (If the

other transactions are not entered their validation phase yet, they are not committed and a concurrent

transaction will never be able to see them.)

If a transaction Tx1 reads such uncommitted rows from Tx2, Tx1 will take a commit dependency on Tx2

and increment an internal counter that keeps track of the number of commit dependencies that Tx1 has.

In addition, Tx2 will add a pointer to Tx1 to a list of dependent transactions that Tx2 maintains.

Waiting for commit dependencies to clear has two main implications:

 A transaction cannot commit until the transactions it depends on have committed. In other words,

it cannot enter the commit phase, until all dependencies have cleared and the internal counter

has been decremented to 0.

 In addition, result sets are not returned to the client until all dependencies have cleared. This

prevents the client from retrieving uncommitted data.

If any of the dependent transactions fails to commit, there is a commit dependency failure. This means

the transaction will fail to commit with the following error:

Error 41301: A previous transaction that the current transaction took a dependency on

has aborted, and the current transaction can no longer commit.

Once all the commit dependencies have cleared, the transaction is logged. Logging will be covered in

more detail in a later section. After the logging is completed, the transaction is marked as committed in

the global transaction table.

The final step in the validation process is to go through the linked list of dependent transactions and

reduce their dependency counters by 1. Once this validation phase is finished, the only reason that this

transaction might fail is due to a log write failure.

Post-processing

The final phase is the post-processing, which is sometimes referred to as ‘commit processing’. The main

operations are to update the timestamps of each of the rows inserted or deleted by this transaction.

 For a DELETE operation, set the row’s end timestamp to the end timestamp of the transaction

and clear the type flag on the row’s end timestamp field to indicate the end-timestamp is really a

timestamp, and not a transaction-ID .

 For an INSERT operation, set the row’s begin timestamp to the end timestamp of the transaction

and clear the type flag on the row’s begin timestamp field.

The actual unlinking and deletion of old row versions is handled by the garbage collection system, which

was discussed earlier.

44

To summarize, let’s take a look at the steps taken when processing a transaction Tx1 involving one or

more memory-optimized tables, after the all of the Transact-SQL is executed and the COMMIT TRAN

statement is encountered:

1. Validate the changes made by Tx1

2. Wait for any commit dependencies to reduce the dependency count to 0.

3. Log the changes.

4. Mark the transaction as committed in the global transaction table.

5. Clear dependencies of transactions that are dependent on Tx1.

6. Update the begin-timestamp of inserted rows and the end-timestamp of deleted rows

(post-processing).

The final step of removing any unneeded or inaccessible rows is not always done immediately and may

be handled by completely separate threads performing garbage collection.

Concurrency
As mentioned earlier, when accessing memory-optimized tables, SQL Server uses completely optimistic

multi-version concurrency control. This does not mean there is never any waiting when working with

memory-optimized tables in a multi-user system, but there is never any waiting for locks. The waiting

that does occur is usually of very short duration, such as when SQL Server is waiting for dependencies to

be resolved during validation, and also when waiting for log writes to complete.

There is some similarity between disk-based tables and memory-optimized tables when performing

concurrent data operations. Both do conflict detection when attempting to update to make sure that

updates are not lost. But processing modifications to disk-based tables is pessimistic in the sense that if

transaction Tx2 attempts to update data that transaction Tx1 has already updated, the system will

considers that transaction Tx1 may possibly fail to commit. Tx2 will then wait for Tx1 to complete, and

will generate a conflict error only if Tx1 was successfully committed. If Tx1 is rolled back, Tx2 can

proceed with no conflict. Because there is an underlying assumption that Tx1 could fail, this is a

pessimistic approach. When operating on memory-optimized tables, the assumption is that Tx1 will

commit. So the In-Memory OLTP engine will generate the conflict error immediately, without waiting to

find out if Tx1 does indeed commit.

In general, you can think of the general strategy in processing operations on memory-optimized tables is

that a transaction Tx1 cannot cause other transaction Tx2 to wait, just because Tx2 wants something,

such as chaging a row’s values, guaranteeing serializability, etc. It is the Tx1 that wants to perform the

operation, or wants to guarantee a certain isolation level, that covers the cost. This could take the form

of getting an update conflict error or waiting for validation to take place which might result in a

validation failure.

Locks

Operations disk-based tables follow the request transaction isolation level semantics by using locks to

make sure data is not changed by transaction Tx2 while transaction Tx1 needs the data to remain

unchanged. In a traditional relational database system in which pages need to be read from disk before

they can be processed, the cost of acquiring and managing locks can just be a fraction of the total wait

time. Waiting for disk reads, and managing the pages in the buffer pool can be at least as much

overhead. But with memory-optimized tables, where there is no cost for reading pages from disk,

45

overhead for lock waits could be a major concern. SQL Server In-Memory OLTP was designed from the

beginning to be a totally lock-free system. Existing rows are never modified, so there is no need to lock

them. As we’ve seen, all updates are performed as a two-step process using row versions. The current

version of the row is marked as deleted and a new version of the row is created.

Latches

Latches are lightweight synchronization primitives that are used by the SQL Server engine to guarantee

consistency of data structures used to manage disk-based tables, including; index and data pages as well

as internal structures such as non-leaf pages in a B-Tree. Even though latches are quite a bit lighter

weight than locks, there can still be substantial overhead and wait time involved in using latches. A latch

must be acquired every time a page is read from disk, to make sure no other process writes the page

while it is being read. A latch is acquired on the memory buffer that a page from disk is being read into,

to make sure no other process uses that buffer. In addition, SQL Server acquires latches on internal

metadata, such as the internal table that keeps track of locks being acquired and released. Since SQL

Server In-Memory OLTP doesn’t do any reading from disk during data processing, doesn’t store data in

buffers and doesn’t apply any locks, there is no reason that latches are required for operations on

memory-optimized tables and one more possible source of waiting and contention is removed.

The mechanics and internals of locks and latches is a huge topic, and is really not in the scope of this

book. However, it might be useful just to see a quick summary of the difference between locks and

latches, and this is shown in Table 6.

Structure Purpose Controlled by Performance cost

Latch Guarantee

consistency of

in-memory

structures.

SQL Server engine

only.

Performance cost is low. To allow

for maximum concurrency and

provide maximum performance,

latches are held only for the

duration of the physical operation

on the in-memory structure, unlike

locks which are held for the

duration of the logical transaction.

Lock Guarantee

consistency of

transactions,

based on

transaction

isolation level.

Can be controlled

by user.

Performance cost is high relative

to latches as locks must be held for

the duration of the transaction.

Table 6: Comparing locks and latches

46

Checkpoint and Recovery

SQL Server must ensure transaction durability for memory-optimized tables, so that changes can be

recovered after a failure. In-Memory OLTP achieves this by having both the checkpoint process and the

transaction logging process write to durable storage. Though not covered in this paper, In-Memory OLTP

is also integrated with the AlwaysOn Availability Group feature that maintains highly available replicas

supporting failover.

The information written to disk consists of checkpoint streams and transaction log streams.

 Log streams contain the changes made by committed transactions logged as insertion and

deletion of row versions.

 Checkpoint streams come in three varieties:

o data streams contain all versions inserted during between two specific timestamp

values.

o delta streams are associated with a particular data stream and contain a list of integers

indicating which row versions in its corresponding data stream have been deleted.

o large data streams contain data from the columnstore index compressed rowgroups for

in memory-optimized tables.

The combined contents of the transaction log and the checkpoint streams are sufficient to recover the

in-memory state of memory-optimized tables to a transactionally consistent point in time. Before we go

into more detail of how the log and the checkpoint files are generated and used, here are a few crucial

points to keep in mind:

 Log streams are stored in the regular SQL Server transaction log.

 Checkpoint streams are stored in SQL Server filestream files which in essence are sequential files

fully managed by SQL Server. (Filestream storage was introduced in SQL Server 2008 and In-

Memory OLTP checkpoint files take advantage of that technology. For more details about

filestream storage and management, see this whitepaper: http://msdn.microsoft.com/en-

us/library/hh461480.aspx). One big change in SQL 2016 is that it uses FileStream filegroup only

as a container. File creation and garbage collection is now fully managed by in-memory OLTP

engine.

 The transaction log contains enough information about committed transactions to redo the

transaction. The changes are recorded as inserts and deletes of row versions marked with the

table they belong to. The transaction log stream for the changes to memory-optimized tables is

generated at the transaction commit time. This is different than disk-based tables where each

change is logged at the time of operation irrespective of the final outcome of the transaction.

No undo information is written to the transaction log.

 Index operations on memory-optimized tables are not logged. With the exception of

compressed segments for columnstore indexes on memory-optimized tables, all indexes are

completely rebuilt on recovery.

http://msdn.microsoft.com/en-us/library/hh461480.aspx
http://msdn.microsoft.com/en-us/library/hh461480.aspx

47

Transaction Logging
In-Memory OLTP’s transaction logging is designed for both scalability and high performance. Each

transaction is logged in a minimal number of potentially large log records that are written to SQL

Server’s regular transaction log. The log records contain information about all versions inserted and

deleted by the transaction. Using this information, the transaction can be redone during recovery.

For In-Memory OLTP transactions, log records are generated only at commit time. In-Memory OLTP

does not use a write-ahead logging (WAL) protocol, such as used when processing operations on disk-

based tables. With WAL, SQL Server writes to the log before writing any changed data to disk, and this

can happen even for uncommitted data written out during checkpoint. For In-Memory OLTP, dirty data

is never written to disk. Furthermore, In-Memory OLTP groups multiple log records into one log record

to minimize the overhead both for the overall size of the log and reducing the number of writes to log

buffer.. Not using WAL is one of the factors that allows In-Memory OLTP commit processing to be

extremely efficient.

The following simple script illustrates the greatly reduced logging for memory-optimized tables. This

script creates a database that can hold memory-optimized tables, and then creates two similar tables.

One is a memory-optimized table, and one is a disk-based table.

USE master
GO
IF EXISTS (SELECT * FROM sys.databases WHERE name='LoggingDemo')
 DROP DATABASE LoggingDemo;
GO
CREATE DATABASE LoggingDemo ON
 PRIMARY (NAME = [LoggingDemo_data], FILENAME = 'C:\HKdata\LoggingDemo_data.mdf'),
 FILEGROUP [LoggingDemo_FG] CONTAINS MEMORY_OPTIMIZED_DATA
 (NAME = [LoggingDemo_container1], FILENAME = 'C:\HKdata\StorageDemo_mod_container1')
 LOG ON (name = [hktest_log], Filename='C:\HKdata\StorageDemo.ldf', size=100MB);
GO
USE LoggingDemo
GO
IF EXISTS (SELECT * FROM sys.objects WHERE name='t1_inmem')
 DROP TABLE [dbo].[t1_inmem]
GO
-- create a simple memory-optimized table
CREATE TABLE [dbo].[t1_inmem]
([c1] int NOT NULL,
 [c2] char(100) NOT NULL,
 CONSTRAINT [pk_index91] PRIMARY KEY NONCLUSTERED HASH ([c1]) WITH(BUCKET_COUNT = 100000
0)
) WITH (MEMORY_OPTIMIZED = ON,
 DURABILITY = SCHEMA_AND_DATA);
GO
IF EXISTS (SELECT * FROM sys.objects WHERE name='t1_disk')
 DROP TABLE [dbo].[t1_disk]
GO
-- create a similar disk-based table
CREATE TABLE [dbo].[t1_disk]
([c1] int NOT NULL,
 [c2] char(100) NOT NULL)
GO
CREATE UNIQUE NONCLUSTERED INDEX t1_disk_index on t1_disk(c1);
GO

Next, populate the disk-based table with 100 rows, and examine the contents of the transaction log

using the undocumented (and unsupported) function fn_dblog().

BEGIN TRAN
DECLARE @i int = 0
WHILE (@i < 100)
BEGIN

48

 INSERT INTO t1_disk VALUES (@i, replicate ('1', 100))
 SET @i = @i + 1
END
COMMIT

-- you will see that SQL Server logged 200 log records
SELECT * FROM sys.fn_dblog(NULL, NULL)
WHERE PartitionId IN
 (SELECT partition_id FROM sys.partitions
 WHERE object_id=object_id('t1_disk'))
ORDER BY [Current LSN] ASC;
GO

Now run a similar update on the memory-optimized table

BEGIN TRAN
DECLARE @i int = 0
WHILE (@i < 100)
BEGIN
 INSERT INTO t1_inmem VALUES (@i, replicate ('1', 100))
 SET @i = @i + 1
END
COMMIT

We can’t filter based on the partition_id, as a single log record access rows from multiple tables or

partitions, so we just look at the most recent log records. We should see the three most recent records

looking similar Figure 19.

-- look at the log
SELECT * FROM sys.fn_dblog(NULL, NULL) order by [Current LSN] DESC;
GO

Figure 19 SQL Server transaction log showing one log record for 100 row transaction

All 100 inserts have been logged in a single log record, of type LOP_HK. LOP indicates a ‘logical

operation’ and HK is an artifact from the project codename, Hekaton. Another undocumented,

unsupported function can be used to break apart a LOP_HK record. You’ll need to replace the LSN value

with the LSN that the results show for your LOP_HK record.

SELECT [current lsn], [transaction id], operation,
 operation_desc, tx_end_timestamp, total_size,
 object_name(table_id) AS TableName
FROM sys.fn_dblog_xtp(null, null)
WHERE [Current LSN] = '00000020:00000157:0005';

The first few rows and columns of output should look like Figure 20.

49

Figure 20 Breaking apart the log record for the inserts on the memory-optimized table shows the individual rows affected

The single log record for the entire transaction on the memory-optimized table, plus the reduced size of

the logged information, helps to make transactions on memory-optimized tables much more efficient.

Checkpoint
Just like for operations on disk-based tables, the main reasons for checkpoint operations are to reduce

recovery time and to keep the active portion of the transaction log as small as possible . The

checkpointing process for memory-optimized tables allows the data from DURABLE tables to be written

to disk so it can be available for recovery. The data on disk is never read during query processing, it is

ONLY on disk to be used when restarting your SQL Server. The checkpointing process is designed to

satisfy two important requirements.

 Continuous checkpointing. Checkpoint related I/O operations occur incrementally and

continuously as transactional activity accumulates. Hyper-active checkpoint schemes (defined as

checkpoint processes which sleep for a while after which they wake up and work as hard as

possible to finish up the accumulated work) can potentially be disruptive to overall system

performance.

 Streaming I/O. Checkpointing for memory-optimized tables relies on streaming I/O rather than

random I/O for most of its operations. Even on SSD devices random I/O is slower than sequential

I/O and can incur more CPU overhead due to smaller individual I/O requests. In addition, SQL

Server 2016 now can read the log in parallel using multiple serializers, which will be discussed in

the section below on the Checkpoint Process.

A checkpoint event for memory-optimized tables is invoked in these situations:

 Manual checkpoint – an explicit checkpoint command initiates checkpoint operations on both

disk-based tables and memory-optimized tables.

 Automatic checkpoint – SQL Server runs the in-memory OLTP checkpoint when the size of the

log has grown by about 1.5 GB since the last checkpoint. (This is increased from 512 MBin SQL

Server 2014.) Note that this is not dependent on the amount of work done on memory-optimized

tables, only the size of the transaction log, which contains all log records for changes to durable

memory-optimized tables and to disk-based tables. It's possible that there have been no

transactions on memory-optimized tables when a checkpoint event occurs.

Because the checkpoint process is continuous, the checkpoint event for memory-optimized tables does

not have the job have writing all the all the changed data to disk, as happens when a checkpoint is

initiated for disk-based tables. The main job of the checkpoint event on memory-optimized tables is to

create a new root file and manage the states of certain other files, as are described in the next section.

50

Checkpoint Files

Checkpoint data is stored in four types of checkpoint files. The main types are DATA files and DELTA

files. There are also LARGE OBJECT files and ROOT files. Files that are precreated and unused, so they

aren’t storing any checkpoint data, have a type of FREE before they are used as one of the four types

listed.

A data file contains only inserted versions of rows, which, as we saw earlier are generated by both

INSERT and UPDATE operations. Each file covers a specific timestamp range. All versions with a begin

timestamp within the data file’s range are contained in the file. Data files are append-only while they

are open and once they are closed, they are strictly read-only. At recovery time the active versions in

the data files are reloaded into memory. The indexes are then rebuilt as the rows are being inserted

during the recovery process.

A delta file stores information about which versions contained in a data file have been subsequently

deleted. There is a 1:1 correspondence between delta files and data files. Delta files are append-only for

the lifetime of the data file they correspond to. At recovery time, the delta file is used as a filter to avoid

reloading deleted versions into memory. Because each data file is paired with exactly one delta file, the

smallest unit of work for recovery is a data/delta file pair. This allows the recovery process to be highly

parallelizable.

A large data file stores the contents of one rowgroup for a columnstore index. If you have no

columnstore indexes, there will be several PRECREATED large data files, but they will never become

ACTIVE.

A root file keeps track of the files generated for each checkpoint event, and a new ACTIVE root file is

created each time a checkpoint event occurs.

As mentioned, the data and delta files are the main types, because they contain the information about

all the transactional activity against memory-optimized tables. Because the data and delta files always

exist in a 1:1 relationship (once they actually contain data), a data file and its corresponding delta file are

sometimes referred to as a checkpoint file pair or CFP.

For SQL Server 2016, CTP3, the checkpoint files can be in one of the following states:

 PRECREATED: A small set of files are kept pre-allocated to minimize wait time when new files

are needed. These files are created when the first memory-optimized table is created. Some of

these files will have a size of 128MB and some will be 8MB so they can be easily converted to

DATA and DELTA files when needed, which start at 12*MB and 8MB respectively. If the machine

has less than 16GB of memory, the files will be 1/8 of the size mentioned, data files will need to

be 16MB, delta files will be 1MB. If a PRECREATED file is used for a root file or LARGE DATA

file, its size will be reduced to 2MB or 4MB. As mentioned above, the precreated files will of

course contain no data and their type is FREE. Twelve files will be PRECREATED when the first

memory-optimized table is created. So this gives us a fixed minimum storage requirement in

databases with memory-optimized tables. SQL Server will convert PRECREATED files to

ACTIVE or MERGE TARGET as those files are needed. SQL Server will create new

PRECREATED files when a CHECKPOINT operation occurs, if there are not 3-5 existing

PRECREATED files.

51

 ACTIVE: These files are being actively filled by inserted and deleted rows. Some of the files in

this state contain the rows that will need to be recovered after a system crash, before applying

the active part of the transaction log. Some of these files contain the rows that will be recovered

by applying the changes from the transaction log. (For SQL Server 2014, these files had the state

‘UNDER CONSTRUCTION’.)

 MERGE TARGET: These files are in the process of being constructed by merging ACTIVE files

that have adjacent transaction ranges. Since these files are in the process of being constructed

and they duplicate information in the ACTIVE files, they will not be used for crash recovery Once

the merge operation is complete, the MERGE TARGET files will become ACTIVE

 WAITING FOR LOG TRUNCATION: Once a merge operation is complete, the old ACTIVE files,

which were the source of the MERGE operation, will transition to WAITING FOR LOG

TRUNCATION. CFPs in this state are needed for the operational correctness of a database with

memory-optimized tables. For example, these files would be needed to recover from a durable

checkpoint to restore to a previous point in time during a restore. A CFP can be marked for

garbage collection once the log truncation point moves beyond its transaction range.

As described, files can transition from one state to another, but only a limited number of transitions are

possible. Figure 21 shows the possible transitions.

Figure 21 Possible state transitions for checkpoint files in SQL Server 2016

The main transitions are the following:

 PRECREATED to ACTIVE – A PRECREATED file is converted to ACTIVE when a new file is

needed to contain transactions for a given transaction range. If it is a root file, it

corresponds to the latest checkpoint operation and will be used for crash recovery.

 PRECREATED to MERGE TARGET A PRECREATED file is converted to MERGE TARGET

when a new file is needed to contain the results of a file merge operation.

52

 MERGE TARGET to ACTIVE When a merge operation is complete, the MERGE TARGET

file takes over the role of merged ACTIVE files and hence it becomes active.

 ACTIVE to WAITING FOR LOG TRUNCATION – When a merge operation is complete, the

ACTIVE files that are the source of the merge operation will transition from ACTIVE to

WAITING FOR LOG TRUNCATION as they are no longer needed for crash recovery. Root

and large object files can be transitioned to WAITING FOR LOG TRUNCATION without

the need for a merge operation.

 WAITING FOR LOG TRUNCATION to Physically deleted – Once the log truncation point

moves beyond the highest transaction ID in a data file, the file is no longer needed and

can be recycled. If there are already 3-5 PRECREATED files of the same type, the file can

be deleted.

 WAITING FOR LOG TRUNCATION to PRECREATED - Once the log truncation point moves

beyond the highest transaction ID in a data file, the file is no longer needed and can be

recycled. If there are NOT 3-5 PRECREATED files of the same type, the file gets moved

to the free pool and its state changes to PRECREATED.

Let’s look at some code that can provide some information about the checkpoint files and their state

transitions. First we’ll create a new database called CFP.

USE master;
GO
IF DB_ID(‘IMDB’) IS NOT NULL
 DROP DATABASE IMDB;
GO
CREATE DATABASE IMDB ON
 PRIMARY (NAME = IMDB_data, FILENAME = 'C:\IMData\IMDB_data.mdf'),
FILEGROUP imdb_mod CONTAINS MEMORY_OPTIMIZED_DATA
(NAME = imdb_mod, FILENAME = 'C:\IMData\imdb_mod')
 LOG ON (name = imdb_log, Filename='C:\IMData\imdb_log.ldf', size=100MB);
GO
ALTER DATABASE IMDB SET RECOVERY FULL;
GO

At this point, you might want to look in your folder containing the memory-optimized data files. In my

example, it’s the folder called C:\IMData\imdb_mod. Note that in my database creation script, that is

the name I gave for the file, but for memory-optimized tables, the value supplied for FILENAME is used

for a folder name. Within that folder is a folder called $FSLOG and one called $HKv2. Open the $HKv2

folder, and it will be empty until you create a memory-optimized table, as you can do by running the

code below:

USE IMDB;
GO
-- create a memory-optimized table with each row of size > 8KB
CREATE TABLE dbo.t_memopt (
 c1 int NOT NULL,
 c2 char(40) NOT NULL,
 c3 char(8000) NOT NULL,

 CONSTRAINT [pk_t_memopt_c1] PRIMARY KEY NONCLUSTERED HASH (c1)
 WITH (BUCKET_COUNT = 100000)
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO

53

At this point, you can look in the folder that was empty, and see that it now has 13 files in it.. My folder

contents are shown in Figure 22.

Figure 22 Files on disk after creating a table

You can refer back to the description of PRECREATED files to see what type of file is indicated by each of

the sizes, or you can run the query below accessing the DMV sys.dm_db_xtp_checkpoint_files.

SELECT checkpoint_file_id, file_type_desc, state_desc,
 file_size_in_bytes/1024/1024 AS size_in_MB,
 relative_file_path
FROM sys.dm_db_xtp_checkpoint_files
ORDER BY file_type_desc;
GO

My results are shown in Figure 23. There are 3 larger FREE PRECREATED files and 9 smaller ones. One

ROOT file is the only one that has the state ACTIVE.

54

Figure 23 The 13 checkpoint files after creating a memory-optimized table

You might also notice that the values in the column relative_file_path are the actual path names of files

in the C:\IMData\imdb_mod folder. In addition, the file component of the path, once the brackets are

removed, is the checkpoint_file_id.

If we had created multiple containers in the filegroup containing the memory-optimized tables, there

would be multiple folders under C:\IMData, and the checkpoint files would be spread across them. SQL

Server 2016 uses a round-robin allocation algorithm for each type of file (DATA, DELTA, LARGE OBJECT

and ROOT). Thus each container contains all types of files.

Multiple containers can be used as a way to parallelize data load. Basically, if creating a second

container reduces data load time (most likely because it is on a separate hard drive), then use it. If the

second container does not speed up data transfer (because it is just another directory on the same hard

drive), then don’t do it. The basic recommendation is to create one container per spindle (or I/O bus).

Let’s now put some rows into the table and backup the database (so that we can make log backups

later:

-- INSERT 8000 rows.
-- This should load 5 16MB data files on a machine with <= 16GB of memory.
SET NOCOUNT ON;
DECLARE @i int = 0
WHILE (@i < 8000)
BEGIN
 INSERT t_memopt VALUES (@i, 'a', REPLICATE ('b', 8000))
 SET @i += 1;
END;
GO
BACKUP DATABASE IMDB TO DISK = N'C:\IMBackups\imdb-populate-table.bak'
 WITH NOFORMAT, INIT, NAME = N'imdb-Full Database Backup', SKIP, NOREWIND,
 NOUNLOAD, STATS = 10;
GO

Take a look in the folder again, and you should see 8 new files. This is because we needed four DATA

files to hold all the 8000 rows of 8K each, and each of those DATA files has a corresponding DELTA file.

On my system, three of those ACTIVE DATA files were transitioned from PRECREATED files and one was

newly created. Three new PRECREATED files were then created.

55

Now let’s look at the metadata in a little more detail. As seen above, the DMV

sys.dm_db_xtp_checkpoint_files, has one row for each file, along with property information for each file.

We can use the following query to look at a few of the columns in the view.

SELECT file_type_desc, state_desc, internal_storage_slot,file_size_in_bytes,
 inserted_row_count, deleted_row_count,
 lower_bound_tsn, upper_bound_tsn,
 checkpoint_file_id, relative_file_path
FROM sys.dm_db_xtp_checkpoint_files
ORDER BY file_type_desc;
GO

The first few columns of the rows for the DATA and DELTA files are shown in Figure 24, and include the

following:

 file_type_desc

This value is one of DATA, DELTA, LARGE OBJECT or ROOT.

 state_desc

This value is one of the state values listed above.

 internal_storage_slot

This value is the pointer to the internal storage array described below, but is not populated until

a file becomes ACTIVE.

 file_size_in_bytes

Note that we have just fixed sizes so far, the same as the PRECREATED sizes; the DATA files are

16777216 bytes (16 MB) and the DELTA files are 1048576 bytes(1 MB).

 logical_row_count

This column contains either the number of inserted rows contained in the file (for DATA files) or

the number of deleted row id contained in the file (for DELTA files).

 lower_bound_tsn

This is the timestamp for the earliest transaction covered by this checkpoint file.

 upper_bound_tsn

This is the timestamp for the last transaction covered by this checkpoint file.

As will be discussed more in the next section, when a checkpoint event occurs, the ACTIVE files that

have had rows inserted into them will be closed, and 1 or more new files will be opened (converted

from the PRECREATED files) to store data. We can query sys.dm_db_xtp_checkpoint_stats DMV and look

at the column last_closed_checkpoint_ts._Any ACTIVE data file with an upper_bound_tsn greater than

this value is considered open. At this point, when I query sys.dm_db_xtp_checkpoint_stats, the

last_closed_checkpoint_ts is 0, so all my ACTIVE files are open. None of the files are closed because

56

there has been no checkpoint event yet, even though (because of the continuous checkpoint) there are

7991 rows in the files. (Six files have 1179 rows and one has 917.) So most of the 8000 rows that I just

inserted have been written on to the checkpoint files. However, if SQL Server needed to recover this

table’s data at this point, it would do it completely from the transaction log.

Figure 24 Checkpoint files after inserted 8000 rows

But now, if we actually execute the CHECKPOINT command in this database, you’ll have one or more

closed checkpoint files. To observe this behavior, I run the following code:

CHECKPOINT
GO
select sum(logical_row_count), max(upper_bound_tsn)
FROM sys.dm_db_xtp_checkpoint_files;
GO
SELECT last_closed_checkpoint_ts
FROM sys.dm_db_xtp_checkpoint_stats;
GO

After executing CHECKPOINT in this example, I see a last_closed_checkpoint_ts value of of 8003 in

sys.dm_db_xtp_checkpoint_stats, which is also now the highest value in any of the files for

upper_bound_tsn. I also see that there are now 8000 rows in the files, as all the inserted rows have now

been written. So all of the files DATA and DELTA files are now closed. The only change to the number of

files is that a new ROOT file was created. Subsequent CHECKPOINT commands will each create a new

ROOT file, and new DATA and DELTA files containing 0 rows and increasing values for upper_bound_tsn.

The metadata of all checkpoint file pairs that exist on disk is stored in an internal array structure

referred to as the Storage Array in which. each entry refers to a CFP. As of SQL Server 2016 the number

of entries (or slots) in the array is dynamic. The entries in the storage array are ordered by timestamp

and as mentioned, each CFP contains transactions in a particular range. The CFPs referenced by the

storage array (along with the tail of the log) represent all the on-disk information required to recover

57

the memory-optimized tables in a database. The internal_storage_slot value in the

sys.dm_db_xtp_checkpoint_files DMV refers to a location in the storage array.

The Checkpoint Process

The checkpoint process for memory-optimized tables is actually comprised of several threads and

various tasks. These are described below:

Controller thread

This thread scans the transaction log to find ranges of transactions that can be given to sub-threads,

called ‘serializers’. Each range of transactions is referred to as a ‘segment’. Segments are identified by a

special segment log record which has information about the range of transactions within the segment.

When the controller sees such a log record, the referenced segment is assigned to a serializer thread.

Segment Generation

A set of transactions is grouped into a segment when a user transaction (with transaction_id T)

generates log records that cause the log to grow and cross the 1MB boundary from the end of the

previous segment end point. The user transaction T will then close the segment. Any transactions with a

transaction_id of less than T will continue to be associated with this segment and their log records will

be part of the segment. The last transaction will write the segment log record when it completes. Newer

transactions, with a transaction_id greater than T, will be associated with subsequent segments.

 Serializer Threads

As each segment log record, representing a unique transaction range, is encountered by the Controller

Thread, it is assigned to a different serializer thread. The serializer thread processes all the log records in

the segment, writing all the inserted and deleted row information to the data and delta files.

Timer Task

A special Timer Task wakes up at regular intervals to check if the active log has exceeded 1.5GB since the

last checkpoint event. If so, an internal transaction is created which closes the current open segment in

the system and marks it as a special segment that should close a checkpoint. Once all the transactions

associated with the segment have completed, the segment definition log record is written. When this

special segment is processed by the controller thread, it wakes up a ‘close thread’.

Close Thread

The Close Thread generates the actual checkpoint event by generating a new root file which contains

information about all the files that are active at the time of the checkpoint This operation is referred to

a ‘closing the checkpoint’.

58

Unlike a checkpoint on disk-based tables, where we can think of a checkpoint as the single operation of

writing all dirty data to disk, the checkpoint process for memory-optimized tables is actually a set of

processes that work together to make sure the your data is recoverable, but that it also can be

processed extremely efficiently.

Merging Checkpoint Files
The set of checkpoint files that SQL Server manages for an In-memory OLTP-enabled database can grow

with each checkpoint operation. However the active content of a data file decreases as more and more

of its versions are marked as deleted in the corresponding delta file. Since the recovery process will read

the contents of all data and delta files, performance of crash recovery degrades as the relevant number

of rows in each data file decreases.

The solution to this problem is for SQL Server to merge data files that have adjacent timestamp ranges,

when their active content (the percentage of undeleted versions in a data file) drops below a threshold.

Merging two data files DF1 and DF2 results in a new data file DF3 covering the combined range of DF1

and DF2. All deleted versions identified in the delta files for DF1 and DF2 are removed during the merge.

The delta file for DF3 is empty immediately after the merge, except for deletions that occurred after the

merge operation started.

Merging can also occur when two adjacent data files are each less than 50% full. Data files can end up

only partially full if a manual checkpoint has been run, which closes the currently open checkpoint data

file and starts a new one.

Automatic Merge

To identify files to be merged, a background task periodically looks at all active data/delta file pairs and

identifies zero more sets of files that qualify. Each set can contain two or more data/delta file pairs that

are adjacent to each other such that the resultant set of rows can still fit in a single data file of size

128MB. Figure 25 shows are some examples of files that will be chosen to be merged under the merge

policy.

Adjacent Source Files (%full) Merge Selection

DF0 (30%) DF1 (50%), DF2 (50%), DF3 (90%) (DF1, DF2)

DF0 (30%) DF1 (20%), DF2 (50%), DF3 (10%) (DF0, DF1, DF2). Files are chosen starting

from left

DF0 (80%), DF1 (10%), DF2 (10%), DF3(20%) (DF0, DF1, DF2). Files are chosen starting

from left

Figure 25 Examples of files that can be chosen for file merge operations

It is possible that two adjacent data files are 60% full. They will not be merged and 40% of storage is

unused. So effectively, the total disk storage used for durable memory-optimized tables is larger than

the corresponding memory-optimized size. In the worst case, the size of storage space taken by durable

tables could be two times larger than the corresponding memory-optimized size.

59

Garbage Collection of Checkpoint Files

Once the merge operation is complete, the source files are not needed and their state changes to

WAITING FOR LOG TRUNCATION. These files can then be removed by a garbage collection process as

long as the log is being regularly truncated. Truncation will happen if regular log backups are taken, or, if

the database is in auto_truncate mode. Before a checkpoint file can be removed, the In-Memory OLTP

engine must ensure that it will not be further required. The garbage collection process is automatic, and

does not require any intervention.

Recovery
Recovery of In-Memory OLTP tables, during a database or instance restart, or as part of a RESTORE

operation, starts after the location of the most recent checkpoint file inventory has been determined by

reading the most recent ROOT file. SQL Server recovery of disk-based tables and In-Memory OLTP

recovery proceed in parallel.

In-Memory OLTP recovery itself is parallelized. Each delta file represents a filter for rows that need not

be loaded from the corresponding data file. This data/delta file pair arrangement means that data

loading can proceed in parallel across multiple IO streams with each stream processing a single data file

and delta file. SQL Server uses one thread per container to create a delta-map for each delta file in that

container. Once the delta maps are created, SQL Server streams data files across all cores, with the

contents of each data file being filtered through the data map so that deleted rows are not reinserted.

This means that if you have 64 cores and 4 containers, 4 threads will be used to create the delta maps

but the data file streaming will be done by 64 cores.

Finally, once the checkpoint file load process completes, the tail of the transaction log is read, starting

from the timestamp of the last checkpoint, and the INSERT and DELETE operations are reapplied. As of

SQL Server 2016, this process of reading and reapplying the logged operations is performed in parallel.

After all the transactions are reapplied, the database will be the state that existed at the time the server

stopped, or the time the backup was made.

Native Compilation of Tables and and Native Modules
In-Memory OLTP provides the ability to natively compile modules that access memory-optimized tables,

including stored procedures, views and inline table-valued functions. In fact, In-memory OLTP also

natively compiles memory-optimized tables themselves. Native compilation allows faster data access

and more efficient query execution than traditional interpreted Transact-SQL provides.

What is native compilation?
Native compilation refers to the process of converting programming constructs to native code,

consisting of processor instructions that can be executed directly by the CPU, without the need for

further compilation or interpretation.

The Transact-SQL language consists of high-level constructs such as CREATE TABLE and SELECT … FROM.

The In-Memory OLTP compiler takes these constructs, and compiles them down to native code for fast

runtime data access and query execution. The In-Memory OLTP compiler takes the table and module

60

definitions as input. It generates C code, and leverages the Visual C compiler to generate the native

code.

The result of the compilation of tables and modules are DLLs that are loaded in memory and linked into

the SQL Server process.

SQL Server compiles both memory-optimized tables and natively compiled modules to native DLLs at the

time the object is created. In addition, the table and module DLLs are recompiled after database or

server restart. The information necessary to recreate the DLLs is stored in the database metadata; the

DLLs themselves are not part of the database. Thus, for example, the DLLs are not part of database

backups.

Maintenance of DLLs
The DLLs for memory optimized tables and natively compiled modules are stored in the filesystem, along

with other generated files, which are kept for troubleshooting and supportability purposes.

The following query shows all table and module DLLs currently loaded in memory on the server:

SELECT name, description FROM sys.dm_os_loaded_modules
WHERE description = 'XTP Native DLL'

Database administrators do not need to maintain the files that are generated by native compilation. SQL

Server automatically removes generated files that are no longer needed, for example on table and

module deletion, when the database is dropped, and also on server or database restart.

Native compilation of tables
Creating a memory optimized table using the CREATE TABLE statement results in the table information

being written to the database metadata, table and index structures being created in memory, and also

the table being compiled to a DLL.

Consider the following sample script, which creates a database and a single memory optimized table:

USE master
GO
IF db_id('IMDBmodules') IS NOT NULL DROP DATABASE IMDBmodules;
GO
CREATE DATABASE IMDBmodules;
GO
ALTER DATABASE IMDBmodules ADD FILEGROUP IMDBmodules_mod CONTAINS MEMORY_OPTIMIZED_DAT
A;
GO
-- adapt filename as needed
ALTER DATABASE IMDBmodules
 ADD FILE (name = ' IMDBmodules_mod',filename = 'c:\IMData\ IMDBmodules_mod')
 TO FILEGROUP IMDBmodules_mod;
GO
USE IMDBmodules
GO
CREATE TABLE dbo.t1
(c1 int not null primary key nonclustered,
 c2 int)
WITH (MEMORY_OPTIMIZED=ON);
GO
-- retrieve the path of the DLL for table t1
SELECT name, description FROM sys.dm_os_loaded_modules
WHERE name LIKE '%xtp_t_' + cast(db_id() AS varchar(10))
 + '_' + cast(object_id('dbo.t1') AS varchar(10)) + '%.dll';
GO

61

The table creation results in the compilation of the table DLL, and also loading that DLL in memory. The

DMV query immediately after the CREATE TABLE statement retrieves the path of the table DLL. Note

that the name of the DLL includes a ‘t’ for table, followed by the database id and the object id.

The table DLL for t1 incorporates the index structures and row format of the table. SQL Server uses the

DLL for traversing indexes and retrieving rows, as well as the contents of the rows.

Native compilation of modules
Modules that are marked with NATIVE_COMPILATION are natively compiled. This means the Transact-

SQL statements in the module are all compiled down to native code, for efficient execution of

performance-critical business logic.

Consider the following sample stored procedure, which inserts rows in the table t1 from the previous

example:

CREATE PROCEDURE dbo.p1
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL=snapshot, LANGUAGE=N'us_english')

 DECLARE @i int = 1000000
 WHILE @i > 0
 BEGIN
 INSERT dbo.t1 VALUES (@i, @i+1)
 SET @i -= 1
 END

END
GO
EXEC dbo.p1
GO
-- reset
DELETE FROM dbo.t1
GO

The DLL for the procedure p1 can interact directly with the DLL for the table t1, as well as the In-

Memory OLTP storage engine, to insert the rows as fast as possible.

The In-Memory OLTP compiler leverages the query optimizer to create an efficient execution plan for

each of the queries in the stored procedure. Note that, for natively compiled modules, the query

execution plan is compiled into the DLL. SQL Server 2016 does not support automatic recompilation of

natively compiled modules, However, you can use the sp_recompile stored procedure to force a natively

compiled module to be recompiled at its next execution. You also have the option of ALTERing a

natively compiled module definition, which will also cause a recompilation. While recompilation is in

progress, the old version of the module continues to be available for execution. Once compilation

completes, the new version of the module is installed.

In addition to forcing a module recompile, when you ALTER a natively compiled module. For natively

compiled procedures the following options can be changed:

 Parameter list

 EXECUTE AS

 TRANSACTION ISOLATION LEVEL

 LANGUAGE

62

 DATEFIRST

 DATEFORMAT

 DELAYED_DURABILITY

Note that the only time natively compiled modules are recompiled automatically is on first execution

after server restart, as well as after failover to an AlwaysOn secondary

Compilation and Query Processing

Figure 26 illustrates the compilation process for natively compiled stored procedures. The process is

similar for other types of natively compiled modules.

Parser

Algebrizer

T-SQL Stored
Procedure Query Optimizer Compiler Runtime

Processing flow and
Query Trees

Processing flow with
Optimized Query

Plans
DLL

Figure 26: Native compilation of stored procedures

1. The user issues a CREATE PROCEDURE statement to SQL Server

2. The parser and algebrizer create the processing flow for the procedure, as well as query trees

for the Transact-SQL queries in the stored procedure

3. The optimizer creates optimized query execution plans for all the queries in the stored

procedure

4. The In-Memory OLTP compiler takes the processing flow with the embedded optimized query

plans and generates a DLL that contains the machine code for executing the stored procedure

5. The generated DLL is loaded in memory and linked to the SQL Server process

Invocation of a natively compiled stored procedure translates to calling a function in the DLL, as shown

in Figure 27

Parser

Algebrizer

Sproc invocation
Stored Proc DLL

In-Memory
Storage Engine

In-memory
Storage

Get Row Read Row VersionParameters

Runtime

Sproc name

Figure 27: Execution of natively compiled stored procedures

1. The user issues an ‘EXEC myproc’ statement

63

2. The parser extracts the name and stored procedure parameters

3. The In-Memory OLTP runtime locates the DLL entry point for the stored procedure

4. The DLL executes the procedure logic and returns the results to the client

Parameter sniffing

Interpreted Transact-SQL stored procedures are compiled into intermediate physical execution plans at

first execution (invocation) time, in contrast to natively compiled stored procedures, which are natively

compiled at create time. When interpreted stored procedures are compiled at invocation, the values of

the parameters supplied for this invocation are used by the optimizer when generating the execution

plan. This use of parameters during compilation is called “parameter sniffing”.

Parameter sniffing is not used for compiling natively compiled stored procedures. All parameters to the

stored procedure are considered to have UNKNOWN values.

Optimization of natively compiled stored procedures has most of the same goals as optimization of

interpreted procedures. That is, the optimizer needs to find query plans for each of the statements in

the procedure so that those statements to be executed as efficiently as possible. As described in the

earlier section on T-SQL Support, the surface area of allowed Transact-SQL constructs is limited in

natively compiled procedures. The optimizer is aware of these limitations, so certain transformations it

might perform for queries outside of a natively compiled procedure are not supported.

SQL Server Feature Support
Many SQL Server features are supported for In-Memory OLTP and databases containing memory-

optimized tables, but not all. For example, AlwaysOn components, log shipping, and database backup

and restore are fully supported. Transactional replication is supported, with memory-optimized tables as

subscribers. However, database mirroring is not supported. You can use SQL Server Management Studio

to work with memory-optimized tables and SSIS is also supported.

For the full list of supported and unsupported features, please refer to the SQL Server In-Memory OLTP

documentation.

Manageability Experience
In-Memory OLTP is completely integrated into the manageability experience of SQL Server. As

mentioned above, SQL Server Management Studio is able to work with your memory-optimized tables,

filegroups and natively compiled procedures. In addition, you can use Server Management Objects

(SMO) and PowerShell to manage your memory-optimized objects.

Memory Requirements

When running In-Memory OLTP, SQL Server will need to be configured with sufficient memory to hold

all your memory-optimized tables. Failure to allocate sufficient memory will cause transactions to fail at

run-time during any operations that require additional memory. Normally this would happen during

INSERT or UPDATE operations, but could also happen for DELETE operations on memory-optimized table

with range indexes. As we saw in the section above on Bw-trees, a DELETE can cause a page merge to

happen, and because index pages are never updated, the merging operation allocates new pages. The

64

In-Memory OLTP memory manager is fully integrated with the SQL Server memory manger and can

react to memory pressure when possible by becoming more aggressive in cleaning up old row versions.

When predicting the amount of memory you’ll need for your memory-optimized tables, a rule of thumb

is that you should have two times the amount of memory that your data will take up. Beyond this, the

total memory requirement depends on your workload; if there are a lot of data modifications due to

OLTP operations, you’ll need more memory for the row versions. If you’re doing lots of reading of

existing data, there might be less memory required.

For planning space requirements for indexes, hash indexes are straightforward. Each bucket requires 8

bytes, so you can just compute the number of buckets times 8 bytes. The size for your range indexes

depends on both the size of the index key and the number of rows in the table. You can assume each

index row is 8 bytes plus the size of the index key (assume K bytes), so the maximum number of rows

that fit on a page would be 8176/(K+8). Divide that result into the expected number of rows to get an

initial estimate. Remember that not all index pages are 8K, and not all pages are completely full. As

pages need to be split and merged, new pages are created and you’ll need to allow space for them, until

the garbage collection process removes them.

Memory Size Limits
Although there is no hard limit on the amount of memory that can be used for memory-optimized tables

in SQL Server 2016. Microsoft recommends an upper limit of no more than 2 TB of table data. Not only is

this the limit Microsoft uses in its testing, but there are other system resource issues that can cause

performance degradation if this limit is exceeded.

The only hard limit is the amount of memory on your system and Microsoft limits your memory-

optimized tables to no more than 80% of your system’s maximum memory value.

Managing Memory with the Resource Governor
A tool that allows you to be proactive in managing memory is the SQL Server Resource Governor. A

database can be bound to a resource pool and you can assign a certain amount of memory to this pool.

The memory-optimized tables in that database cannot use more memory than that, and this becomes

the maximum memory value of which no more than 80% can be used for memory-optimized tables. This

limit is needed to ensure the system remains stable under memory pressure. In fact, any memory

consumed by memory-optimized tables and their indexes is managed by the Resource Governor, and no

other class of memory is managed by the Resource Governor. If a database is not explicitly mapped to a

pool, it will implicitly be mapped to the Default pool.

If you want to use Resource Governor to limit the memory for memory-optimized tables, the first step is

to create a memory pool for your In-Memory OLTP database specifying a MAX_MEMORY_PERCENT

value. This specifies the percentage of the SQL Server memory which may be allocated to memory-

optimized tables in databases associated with this pool.

For example:

CREATE RESOURCE POOL IMPool WITH (MAX_MEMORY_PERCENT=50);

ALTER RESOURCE GOVERNOR RECONFIGURE;

65

Once you have created your resource pool(s), you need to bind the databases which you want to

manage to the respective pools using the procedure sp_xtp_bind_db_resource_pool. Note that one pool

may contain many databases, but a database is only associated with one pool at any point in time.

Here is an example:

EXEC sp_xtp_bind_db_resource_pool 'IMDB', 'IMPool';

Because memory is assigned to a resource pool as it is allocated, simply associating a database with a

pool will not transfer the assignment of any memory already allocated. In order to do that, you need to

take the database offline and bring it back online. As the data is read into the memory-optimized tables,

the memory is associated with the new pool.

For example:

ALTER DATABASE [IMDB] SET OFFLINE;

ALTER DATABASE [IMDB] SET ONLINE;

Should you wish to remove the binding between a database and a pool, you can use the procedure

sp_xtp_unbind_db_resource_pool. For example, you may wish to move the database to a different pool,

or to delete the pool entirely, to replace it with some other pool(s).

EXEC sp_xtp_unbind_db_resource_pool 'IMPool';

More details can be found in the online documentation: https://msdn.microsoft.com/en-

us/library/dn465873.aspx

Metadata
Several existing metadata objects have been enhanced to provide information about memory-optimized

tables and procedures and new objects have been added.

There is one function that has been enhanced:

 OBJECTPROPERTY – now includes a property TableIsMemoryOptimized

Catalog Views

The following system views have been enhanced:

 sys.tables – has three new columns:
o durability (0 or 1)
o durability_desc (SCHEMA_AND_DATA and SCHEMA_ONLY)
o is_memory_optimized (0 or 1)

 sys.table_types – now has a column is_memory_optimized

 sys.indexes – now has a possible type value of 7 and a corresponding type_desc value of
NONCLUSTERED HASH. (Range indexes have a type_value of 2 and a type_desc of
NONCLUSTERED, just as for a nonclustered B-tree index.)

https://msdn.microsoft.com/en-us/library/dn465873.aspx
https://msdn.microsoft.com/en-us/library/dn465873.aspx

66

 sys.index_columns now has different semantics for the column is_descending_key, in that for
HASH indexes, the value is meaningless and ignored.

 sys.data_spaces -- now has a possible type value of FX and a corresponding type_desc value of
MEMORY_OPTIMIZED_DATA_FILEGROUP

 sys.sql_modules and sys.all_sql_modules – now contain a column uses_native_compilation

In addition, there are several new metadata objects that provide information specifically for memory-

optimized tables.

A new catalog view has been added to support hash indexes: sys.hash_indexes. This view is based on

sys.indexes so has the same columns as that view, with one extra column added. The bucket_count

column shows a count of the number of hash buckets specified for the index and the value cannot be

changed without dropping and recreating the index.

Dynamic Management Objects

The following SQL Server Dynamic Management Views provide metadata for In-Memory OLTP. (The
xtp identifier stands for ‘eXtreme transaction processing’.) The ones that start with sys.dm_db_xtp_*

give information about individual In-Memory OLTP -enabled databases, where the ones that start with
sys.dm_xtp_* provide instance-wide information. You can read about the details of these objects in the
documentation. Some of these DMVs have already been mentioned in earlier relevant sections of this
paper.

For more information about DMVs that support memory-optimized tables, see Memory-Optimized
Table Dynamic Management Views.

 sys.dm_db_xtp_checkpoint_stats
 sys.dm_db_xtp_checkpoint_files

 sys.dm_db_xtp_gc_cycles_stats
 sys.dm_xtp_gc_stats
 sys.dm_xtp_gc_queue_stats

 sys.dm_xtp_threads
 sys.dm_xtp_system_memory_consumers
 sys.dm_db_xtp_memory_consumers
 sys.dm_db_xtp_table_memory_stats

 sys.dm_xtp_transaction_stats
 sys.dm_db_xtp_transactions
 sys.dm_xtp_transaction_recent_rows

 sys.dm_db_xtp_index_stats
 sys.dm_db_xtp_hash_index_stats
 sys.dm_db_xtp_nonclustered_index_stats
 sys.dm_db_xtp_object_stats


http://msdn.microsoft.com/en-us/library/dn133203(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn133203(v=sql.120).aspx
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8d0b18ca-db4d-4376-9905-3e4457727c46.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/ac8e6333-7a9f-478a-b446-5602283e81c9.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/80190480-8761-49af-bb6b-b59b0c189512.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8287d611-50e3-43e1-ba8d-3e3793d3ba0e.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/c18c6200-8cb9-4a7b-a8f2-ed586a169c29.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/9eb0dd82-7920-42e0-9e50-7ce6e7ecee8b.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/9389f48d-0de5-47bd-9821-4db8f04504e4.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8d0a50b8-2015-4576-930f-e3307dfc888e.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/07300b59-3cab-4d3e-8138-5ea8f584f88f.htm

67

XEvents

The In-Memory OLTP engine provides over 150 xEvents to help you in monitoring and troubleshooting.

You can run the following query to see the xEvents currently available:

SELECT p.name, o.name, o.description
FROM sys.dm_xe_objects o JOIN sys.dm_xe_packages p
 ON o.package_guid=p.guid
WHERE p.name = 'XtpEngine';
GO

Performance Counters

The In-Memory OLTP engine provides performance counters to help you in monitoring and

troubleshooting. You can run the the query below to see the performance counters currently available:

SELECT object_name as ObjectName, counter_name as CounterName
FROM sys.dm_os_performance_counters
WHERE object_name LIKE 'XTP%';
GO

My results show 57 counters in seven different categories. The categories are listed and described in

Table 7.

XTP Cursors

The XTP Cursors performance object contains counters related to internal XTP engine cursors.

Cursors are the low-level building blocks the XTP engine uses to process Transact-SQL queries.

As such, you do not typically have direct control over them.

XTP Databases [No documentation yet.]

XTP Garbage

Collection

The XTP Garbage Collection performance object contains counters related to the XTP engine's

garbage collector. Counters include the number of rows processed, the number of scans per

second, and the number of rows expired per second.

XTP Phantom

Processor

The XTP Phantom Processor performance object contains counters related to the XTP engine's

phantom processing subsystem. This component is responsible for detecting phantom rows in

transactions running at the SERIALIZABLE isolation level.

XTP Storage
The XTP Storage object contains counters related to the checkpoint files. Counters include the

number for checkpoints closed, and the number of files merged.

XTP

Transaction Log

The XTP Transaction Log performance object contains counters related to XTP transaction

logging in SQL Server. Counters include number of log bytes and number of log records written

by the In-Memory OLTP engine per second.

XTP

Transactions

The XTP Transactions performance object contains counters related to XTP engine transactions

in SQL Server. Counters include the number of commit dependencies taken and the number of

commit dependencies that rolled back.

Table 7: Categories of performance counters for In-Memory OLTP processing

http://msdn.microsoft.com/en-us/library/dn511011(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511010(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511010(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511006(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511006(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511013(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511013(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511009(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511009(v=sql.120).aspx

68

Figure 28 Report of Memory Usage By Memory Optimized Objects

This report shows you the space used by the table rows and the indexes, as well as the small amount of

space used by the system. Remember that hash indexes will have memory allocated for the declared

number of buckets as soon as they’re created, so this report will show memory usage for those indexes

before any rows are inserted. For range indexes, memory will not be allocated until rows are added,

and the memory requirement will depend on the size of the index keys and the number of rows.

Migration to In-Memory OLTP
Although it might sound like In-Memory OLTP is a panacea for all your relational database performance

problems, this of course is not true. There are some applications that can experience enormous

improvement when using memory-optimized tables and natively compiled stored procedures, and

others that will not see drastic gains, or perhaps no gains at all. The kinds of applications that will

achieve the best improvements are the ones that are currently experiencing the bottlenecks that In-

Memory OLTP addresses and removes.

The main bottlenecks that In-Memory OLTP addresses are the following:

 Lock or latch contention

The lock and latch-free design of memory-optimized tables is probably the performance benefit that is

most well-known. As discussed in detail in earlier chapters, the data structures used for the memory-

69

optimized tables’ row versions, and the fact that the rows are not stored in memory buffers, allow for

high concurrency data access and modification without the need for locks or latches. Tables used by

an application showing excessive lock or latch wait times can be considered for migration to In-

Memory OLTP, and the application’s performance will most likely show substantial improvement.

 I/O and logging

Rows for your memory-optimized tables are always in memory, so no disk reads are ever required to

make the data available. The streaming checkpoint operations are also highly optimized to use a

minimal amount of resources to write the durable data to disk in the checkpoint files. In addition,

index information is never written to disk, reducing the I/O requirements even further. If your

application shows excessive page I/O latch waits, or any other waits associated with reading from or

writing to disk, you will likely get a performance improvement with memory-optimized tables.

 Transaction logging

Log I/O can be another bottleneck with disk-based tables, as (in most cases for OLTP operations)

every table and index row modified is written to the transaction log on disk as a separate log record.

Not only does In-Memory OLTP allow you to create SCHEMA_ONLY tables that do not require any

logging, but even for tables defined as SCHEMA_AND_DATA, the logging overhead is significantly

reduced. Each log record for changes to a memory-optimized table can contain information about

many modified rows, and changes to indexes are never logged at all. If your application experiences

high wait times due to log writes, you can see an improvement after migrating your most heavily

modified tables to memory-optimized tables.

 Hardware Resource Limitations

In addition to the limits on disk I/O that can cause performance problems with disk-based tables,

other hardware resources can also be the cause of bottlenecks. CPU resources are frequently

stressed in compute-intensive OLTP workloads. In addition, CPU resources are also cause

slowdowns when small queries need to be executed repeatedly and the interpretation of the code

needed by your queries needs to be repeated over and over again. Migrating your code to use

natively compiled procedures can greatly reduce the CPU resources required because the natively

compiled code requires far few CPU instructions than the interpreted code needs to perform the same

operations. If you have many small code blocks running repeatedly, especially if you are noticing a

high number of recompiles, you may notice a substantial performance improvement after putting your

code into natively compiled procedures.

The next section will describe some of the most common data access and manipulation scenarios that

your application might include that would experience some of the bottlenecks listed above.

High Volume of INSERTs
Applications that are very INSERT oriented, such as sales order entry systems, frequently encounter

bottlenecks with locks and latches on the last page of a table or index, if the rows are being inserted in a

particular order. Even if row locks are being used, there are still latches acquired on the page, and for

very high volumes this can be problematic. Another impact to performance occurs with the logging

required for the inserted rows and for the index rows created for each inserted data row.

70

SQL Server In-Memory OLTP addresses these problems by eliminating the need for locks and latches.

Logging overhead is reduced because operations on memory-optimized tables log their changes more

efficiently. In addition, the changes to the indexes are not logged at all. If the application is such that the

INSERT operations initially load data into a staging table, you can consider creating the staging table to

be SCHEMA_ONLY, and then there will be no logging for the table rows also.

Finally, the code to process the INSERTs must be run repeatedly, for each row inserted. Using interop

TSQL imposes a lot of overhead. If the code to process the INSERTs meets the criteria for creating a

natively compiled procedure, executing the INSERTs through compiled code can make a major

difference in performance.

High Volume of SELECTs
An application needing to quickly process a high volume of SELECT operations and to be able to scale to

support even greater numbers faces some of the same bottlenecks with locking and latching as in the

previous example. Of course, there is no logging requirement, but the other considerations will still

apply.

You do need to be aware of the fact that operations on memory-optimized tables are always executed

on a single thread; there is no support for parallel operations on memory-optimized tables. If you are

processing large number of rows in each SELECT, this can be problematic, but fortunately, this is not the

typical type of query for OLTP workloads. If you do have datasets that would benefit from parallelism,

you can consider moving the relevant data to a separate table for processing. If that table is a disk-based

table, then of course parallelism can be considered by the query optimizer. Alternatively, if moving the

needed data to its own table reduces the number of rows that need to be scanned, that in itself can

speed up the processing. Finally, if the code for processing these needed rows can be executed in a

natively compiled procedure, the speed improvement for compiled code can sometimes outweigh the

cost of having the run the queries single threaded.

CPU-intensive operations
Similar to the first example where large volumes of data have to be inserted, there are additional

considerations if the data needs to be manipulated before it is available for reading by the application.

The manipulation can involve updating or deleting some of the data if it is deemed inappropriate, or can

involve computations to put the data into the proper form for use.

The biggest bottleneck in this scenario will be the locking and latching as the data is read for processing

and then the processing is invoked. Additional bottlenecks such as CPU resources can occur depending

on the complexity of the actual code being executed.

As discussed, In-Memory OLTP can provide a solution for all of these bottlenecks.

Extremely fast business transactions
Applications that need to run a large volume of simple transactions very quickly from hundreds if not

thousands of concurrent users, experience bottlenecks both from the latching and locking required and

from the CPU associated with the query processing stack. If the queries themselves are relatively short

71

and simple, the cost of repeated recompilation and query interpretation can become a major

component of the overall processing time.

In-Memory OLTP solves these problems by providing a lock and latch free environment. Also, the ability

to run the code in a truly compiled form, with no compiling or interpretation, can give an enormous

performance boost for these kinds of applications.

Session state management
Although this is not specifically a type of application, but rather a function required by many different

types of applications, it still bears mention here.

Session state management involves maintaining state information across various boundaries where

normally there is no communication. The most prominent example is web-based interactions using

HTTP. When users connect to a website, information about their choices and actions needs to be

maintained across multiple HTTP requests. In general, this is something that can be maintained by the

database system, but typically at a high cost. The state information is usually very dynamic and highly

concurrent which each user’s information changing very frequently. It also can involve lookup queries

for each user to gather other information the system might be keeping for that user, such as past

activity. Although the data maintained might be minimal in size, the number of requests to access that

data can be large, leading to extreme locking and latching requirements resulting in very noticeable

bottlenecks and serious slowdowns in responses to user requests.

In-Memory OLTP is perfect solution for this application requirement, as a small memory-optimized table

can handle an enormous number of concurrent lookups and modifications. In addition, a session state

table almost always is transient and does not need to be preserved across server restarts, so a

SCHEMA_ONLY table can be used an improve the performance even further.

Unsuitable Application Scenarios
Although there are many types of applications that can gain considerable performance improvement

when using In-Memory OLTP, either just by creating memory-optimized tables or by including natively

compiled stored procedures, not every application is suited to In-Memory OLTP. In most cases, at least

part of any application could be better served using traditional disk-based tables, or at least, you might

not see any improvement with In-Memory OLTP. If your application meets any of the following criteria,

you may need to rethink whether In-Memory OLTP is right for you.

Inability to make changes

If your application requires table features that are not supported by memory-optimized
tables, you will not be able to create in-memory tables, or you may need to redefine the
table. In addition, if your application code for accessing and manipulating your table data
uses constructs not supported for natively compiled procedures, you may have to limit your
TSQL to using only interop code.

Memory limitations

Memory-optimized tables must be completed in memory. If the size of your tables exceeds
what SQL Server In-Memory OLTP, or your particular machine, supports, you will not be
able to have all the required data in memory. Of course, you can have some memory-

72

optimized tables and some disk-based tables, but you’ll need to carefully analyze the
workload to find which tables will provide the most benefit by being created as memory-
optimized tables.

Non-OLTP workload

In-Memory OLTP, as the name implies, is designed to be the most benefit to Online
Transaction Processing operations. There of course may be of benefit to other types of
processing, such as reporting and data warehousing, but those are not the design goals of
the feature. If you are working with processing that is not OLTP in nature, you should make
sure you careful test all operations, and you may find that In-Memory OLTP does not
provide you with any measurable improvements.

Dependencies on locking behavior

Although not best practice in most cases, you might have application processing that
depends on the locking behavior supplied with pessimistic concurrency on disk-based
tables. For example, if you’re using the READPAST hint to manage work queues, you need to
have locks in order to find the next row in the queue to process. If your application was
written to expect the behavior experienced in SNAPSHOT ISOLATION on disk-based tables
when a write-write conflict occurs, i.e. that the conflict is not reported until the first process
commits, then you will not want to use SNAPSHOT isolation with memory-optimized tables.
As mentioned, it is usually not best practice to write an application that depends on specific
locking behavior, as that can change even without switching to In-Memory OLTP. However,
that doesn’t mean that no one will have code that does this. If yours is one of those
applications, you’ll need to either delay converting to In-Memory OLTP, or rewrite the
relevant sections of your code.

The Migration Process
SQL Server In-Memory OLTP can make migration a very straight forward and manageable process,

because migration doesn’t have to be an all or nothing decision. You could choose to just convert one or

two critical tables, for which you’d noticed a very large number of locks or latches, and/or long durations

on waits for locks or latches. Tables should be converted before stored procedures, since natively

compiled procedures will only be able to access memory-optimized tables.

Ideally, before starting any migration of tables or stored procedures to use In-Memory OLTP, you

perform a thorough analysis of your current workload, and establish a baseline. Monitoring, analysis and

baselining is well beyond the scope of this book, but you can take a look at this page in the SQL Server

2016 documentation to get several pointers on performance this kind of analysis:

https://msdn.microsoft.com/en-us/library/ms189081(v=sql.130).aspx .

You might consider something like the following list of steps as you work through a migration to In-

Memory OLTP:

1. Identify the tables with the biggest bottlenecks
2. Address the constructs in the table DDL that are not supported for memory-optimized

tables. Note that there is Memory Optimization Advisor tool, available through SQL Server
Management Studio by right-clicking any table in any database, that can tell you what
constructs are not supported for memory-optimized tables.

3. Recreate the tables as in-memory, to be accessed using interop code.

https://msdn.microsoft.com/en-us/library/ms189081(v=sql.130).aspx

73

4. Identify procedures or sections of code with biggest performance bottlenecks, that access
the converted tables.

5. Address the T-SQL limitations in the code. If the code is in a stored procedure, you can use
the Native Compilation Advisor tool, available through SQL Server Management Studio by
right-clicking any stored procedure. Recreate the code in a natively compiled procedure.

6. Compare performance against the baseline.

You can think of this as a cyclic process. Start with a few tables and convert them. Then convert the

most critical procedures that access those tables. Then convert a few more tables, and then a couple of

additional procedures. You can repeat this cycle as needed, until the performance gains are minimal.

Best Practice Recommendations
Although I have mentioned some best practice recommendations earlier in this paper as I described

various features and the choices you can make, I want to include a specific list here of the most

important ones. Keep these principals in mind as you design your memory-optimized tables and indexes:

Index Tuning
 Do not over or underestimate the bucket count for hash indexes if at all possible. The bucket

could should be at least equal to the number of distinct values for the index key columns.

 For very low cardinality columns, create range indexes instead of hash indexes.

 Create columnstore indexes only for tables that will be used primarily for reporting purposes.

Also, because of differences in the way that memory-optimized tables are organized and managed, the

optimizer does need to be aware of different choices it may need to make and certain execution plan

options that are not available when working with memory-optimized tables. The most important

differences are listed here:

 There are no ordered scans with hash indexes.

If your query is looking for a range of values or requires that the results be returned in
sorted order, a hash index will not be useful at all, and thus will be not even be considered
by the optimizer.

 A hash index can only be used if the filter is based on an equality comparison.

This is a similar situation to the previous bullet. If the query does not specify an exact value
for one of the columns in the hash index key, the hash value cannot be determined. So if we
have a hash index on city, and the query is looking for city LIKE ‘San%’, a hash lookup is not
possible.

 A hash index cannot be used if not all columns are included in filter conditions.

The examples shows earlier for hash indexes illustrated an index on just a single column.
However, just like indexes on disk-based tables, hash indexes on memory-optimized tables
can be composite. However, the hash function used to determine which bucket a row

74

belongs in is based on all columns in the index. So if we had an index on (city, state), a row
for a customer from Springfield, Illinois would hash to a completely different value than a
row for a customer from Springfield, Missouri, and also would hash to a completely
different value than a row for a customer from Chicago, Illinois. If a query only supplies a
value for city, a hash value cannot be generated and the index cannot be used, unless the
entire index is used for a scan.

 Range indexes cannot be scanned in reverse order.

Although there is no concept of ‘previous pointers’ in a range index on a memory-optimized
tables, if your query requests the data to be sorted in DESC order, the optimizer could
choose to use an index was built as a descending index. In fact, it is possible to have two
indexes on the same column, one defined as ascending and one defined as descending. It is
also possible to have both a range and a hash index on the same column. In general, the
optimizer will choose to use a hash index over a range index if the cost estimations are the
same.

 Halloween protection is not incorporated into the query plans.

Halloween protection provides guarantees against accessing the same row multiple times
during query processing. Operations on disk-based tables use spooling operators to make
sure rows are not accessing repeatedly, but this is not necessary for plans on memory-
optimized tables. Halloween protection is provided in the storage engine for memory-
optimized tables by including a statement ID as part of the row version overhead bytes. The
statement ID that introduced a row version is stored with the row, so if the same statement
encounters that row again, it knows it has already been processed.

If no index can be used efficiently, the plan chosen will be a table scan. However, with memory-

optimized tables, there really is no concept of a table scan because all rows are connected through their

indexes. If a plan indicates that a table scan is to be performed any index can be used to access all the

rows, but this choice is usually made at runtime. SQL Server will usually use the hash index with the

lowest bucket count, but this is not guaranteed.

The costing formula that the optimizer uses for operations on memory-optimized tables is similar to the

formula for operations on disk-based tables, with only a few exceptions. In addition, natively compiled

procedure plans will never be recompiled on the fly; the only way to get a new plan is to drop and

recreate the procedure. Along with this, SQL Server In-Memory OLTP does not keep any row

modification counters, and does not automatically update statistics on memory-optimized tables. One

of the reasons for not updating the statistics is so there will be no chance of dependency failures due to

waiting for statistics to be gathered.

General Suggestions
 Statistics are not updated automatically, and there are no automatic recompiles of any queries on

memory-optimized tables.

75

 Memory optimized table variables behave the same as regular table variables, but are stored in

your database’s memory space, not in tempdb. You can consider using memory-optimized table

variables anywhere, as they are not transactional and will can help relieve tempdb contention.

 Use SNAPSHOT isolation level for your memory-optimized tables if at all possible and enable the

database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT. Remember that there are two

transaction contexts when using memory-optimized tables, and when memory-optimized tables

use SNAPSHOT, your disk-based tables must use an isolation level other than SNAPSHOT The

SET option is only applicable to disk-based tables.

Summary
SQL Server In-Memory OLTP provides the ability to create and work with tables that are memory-

optimized and extremely efficient to manage, providing performance optimization for OLTP workloads.

They are accessed with true multi-version optimistic concurrency control requiring no locks or latches

during processing. All In-Memory OLTP memory-optimized tables must have at least one index, and all

access is via indexes. In-Memory OLTP memory-optimized tables can be referenced in the same

transactions as disk-based tables, with only a few restrictions. Natively compiled stored procedures are

the fastest way to access your memory-optimized tables and performance business logic computations.

For more information:
http://www.microsoft.com/sqlserver/: SQL Server Web site

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

 Are you rating it high due to having good examples, excellent screen shots, clear writing,

or another reason?

 Are you rating it low due to poor examples, fuzzy screen shots, or unclear writing?

This feedback will help us improve the quality of whitepapers we release.

This whitepaper will eventually be updated for the final product release. The final paper will

contain more technical details on the following topics;

1. Monitoring and Troubleshooting

2. Performance Examples

3. Best Practices Suggestions

If you have specific questions in these areas, or any of the areas discussed in the current paper,

that you would like to see addressed in the book, please submit them through the feedback link.

Send feedback.

http://www.microsoft.com/sqlserver/
http://technet.microsoft.com/en-us/sqlserver/
http://msdn.microsoft.com/en-us/sqlserver/
mailto:hkwp@sqlserverinternals.com?subject=White%20Paper%20Feedback:Hekaton%20Internals

