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Summary:  
In-memory OLTP, frequently referred to by its codename “Hekaton”, was introduced in SQL Server 2014. 

This powerful technology allows you to take advantage of large amounts of memory and many dozens 

of cores to increase performance for OLTP operations by up to 30 to 40 times! SQL Server 2016 is 

continuing the investment in In-memory OLTP by removing many of the limitations found in SQL Server 

2014, and enhancing internal processing algorithms so that In-memory OLTP can provide even greater 

improvements.  This paper describes the implementation of SQL Server 2016’s In-memory OLTP 

technology as of SQL Server 2016 CTP3.   Using In-memory OLTP, tables can be declared as ‘memory 

optimized’ to enable In-Memory OLTP’s capabilities. Memory-optimized tables are fully transactional 

and can be accessed using Transact-SQL. Transact-SQL stored procedures, triggers and scalar UDFs can 

be compiled to machine code for further performance improvements on memory-optimized tables. The 

engine is designed for high concurrency with no blocking. 
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Introduction 
SQL Server was originally designed at a time when it could be assumed that main memory was very 

expensive, so data needed to reside on disk except when it was actually needed for processing.  This 

assumption is no longer valid as memory prices have dropped enormously over the last 30 years. At the 

same time, multi-core servers have become affordable, so that today one can buy a server with 32 cores 

and 1TB of memory for under $50K.  Since many, if not most, of the OLTP databases in production can fit 

entirely in 1TB, we need to re-evaluate the benefit of storing data on disk and incurring the I/O expense 

when the data needs to be read into memory to be processed. In addition, OLTP databases also incur 

expenses when this data is updated and needs to be written back out to disk.  Memory-optimized tables 

are stored completely differently than disk-based tables and these new data structures allow the data to 

be accessed and processed much more efficiently.  

Because of this trend to much more available memory and many more cores, the SQL Server team at 

Microsoft began building a database engine optimized for large main memories and many-core CPUs. 

This paper describes the technical implementation of the In-memory OLTP database engine feature.  

 

Design Considerations and Purpose  
The move to produce a true main-memory database has been driven by three basic needs: 1) fitting 

most or all of data required by a workload into main-memory, 2) lower latency time for data operations, 

and 3) specialized database engines that target specific types of workloads need to be tuned just for 

those workloads.  Moore’s law has impacted the cost of memory allowing for main memories to be large 

enough to satisfy (1) and to partially satisfy (2).  (Larger memories reduce latency for reads, but don’t 

affect the latency due towrites to disk needed by traditional database systems).  Other features of In-

Memory OLTP allow for greatly improved latency for data modification operations.  The need for 

specialized database engines is driven by the recognition that systems designed for a particular class of 

workload can frequently out-perform more general purpose systems by a factor of 10 or more.  Most 

specialized systems, including those for CEP (complex event processing), DW/BI and OLTP, optimize data 

structures and algorithms by focusing on in-memory structures. 

Microsoft’s reason for creating In-Memory OLTP comes mainly from this fact that main memory sizes 

are growing at a rapid rate and becoming less expensive. It is not unreasonable to think that most, if not 

all, OLTP databases or the entire performance sensitive working dataset could reside entirely in 

memory. Many of the largest financial, online retail and airline reservation systems fall between 500GB 

to 5TB with working sets that are significantly smaller. As of Q2 2015, even a four socket server could 

hold 3TB of DRAM using 32GB SIMMS and 6TB of DRAM using 64GB DIMMS.   Looking further ahead, it’s 

entirely possible that in a few years you’ll be able to build distributed DRAM based systems with 

capacities of 1-10 Petabytes at a cost of less than $5/GB.  It is also only a question of time before non-

volatile RAM becomes viable, as it already is in development in various form factors.  

If most or all of an application’s data is able to be entirely memory resident, the costing 

rules,particularly for estimating I/O costs, that the SQL Server optimizer has used since the very first 

version become almost completely obsolete, because the rules assume all pages accessed can 

potentially require a physical read from disk. If there is no need to ever read from disk, the optimizer 
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doesn’t need to consider I/O cost at all.  . In addition, if there is no wait time required for disk reads, 

other wait statistics, such as waiting for locks to be released, waiting for latches to be available, or 

waiting for log writes to complete, can become disproportionately large.  In-Memory OLTP addresses all 

these issues. In-Memory OLTP removes the issues of waiting for locks to be released, using a new type 

of multi-version optimistic concurrency control. It reduces the delays of waiting for log writes by 

generating far less log data and needing fewer log writes.  

Terminology  
 SQL Server 2016’s In-Memory OLTP feature refers to a suite of technologies for working with memory-

optimized tables. The alternative to memory-optimized tables will be referred to as disk-based tables, 

which SQL Server has always provided.  Terms to be used include: 

 Memory-optimized tables refer to tables using the new data structures added as part of In-

Memory OLTP, and will be described in detail in this paper. 

 Disk-based tables refer to the alternative to memory-optimized tables, and use the data 

structures that SQL Server has always used, with pages of 8K that need to be read from and 

written to disk as a unit. 

 Natively compiled modules refer to object types supported by In-Memory OLTP that can be 

compiled to machine code and have the potential to increase performance even further than 

just using memory-optimized tables. Supported object types are stored procedures, triggers 

scalar user-defined functions and inline multistatement user-defined functions. The alternative 

is interpreted Transact-SQL modules, which is what SQL Server has always used. Natively 

compiled modules can only reference memory-optimized tables.  

 Cross-container transactions refer to transactions that reference both memory-optimized tables 

and disk-based tables.  

 Interop refers to interpreted Transact-SQL that references memory-optimized tables  

What’s Special About In-Memory OLTP? 
In-Memory OLTP is integrated with the SQL Server relational engine, and can be accessed transparently 

using the same interfacesIn fact, users may be unaware that they are working with memory-optimized 

tables rather than disk-based tables. However, the internal behavior and capabilities of In-memory OLTP 

are very different.  Figure 1 gives an overview of the SQL Server engine with the In-Memory OLTP 

components. 
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Figure 1The SQL Server engine including the In-Memory OLTP component 

Notice that the client application connects to the TDS Handler the same way for memory-optimized 

tables or disk-based tables, whether it will be calling natively compiled stored procedures or interpreted 

Transact-SQL.   You can see that interpreted Transact-SQL can access memory-optimized tables using 

the interop capabilities, but that natively compiled stored procedures can only access memory-

optimized tables.   

Memory-optimized tables 
One of the most important differences between memory-optimized tables and disk-based tables is that 

pages do not need to be read into cache from disk when the memory-optimized tables are accessed. All 

the data is stored in memory, all the time. Memory-optimized tables can be either durable or non-

durable. The default is for these tables to be durable, and these durable tables also meet all the other 

transactional requirements; they are atomic, isolated, and consistent.  A set of checkpoint files (data and 

delta file pairs), which are only used for recovery purposes, is created on files residing in memory-

optimized filegroups that keep track of the changes to the data in the durable tables. These checkpoint 

files are append-only.   

Operations on memory-optimized tables use the same transaction log that is used for operations on 

disk-based tables, and as always, the transaction log is stored on disk. In case of a system crash or server 

shutdown, the rows of data in the memory-optimized tables can be recreated from the checkpoint files 

and the transaction log.  

In-Memory OLTP does provide the option to create a table that is non-durable and not logged using an 

option called SCHEMA_ONLY. As the option indicates, the table schema will be durable, even though the 
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data is not.  These tables do not require any IO operations during transaction processing, and nothing is 

written to the checkpoint files for these tables. The data is only available in memory while SQL Server is 

running.  In the event of a SQL Server shutdown or an AlwaysOn Availabilty group failover, the data in 

these tables is lost. The schema will be recreated when the database they belong to is recovered, but 

there will be no data.  These tables could be useful, for example, as staging tables in ETL scenarios or for 

storing Web server session state. Although the data is not durable, operations on these tables meet all 

the other transactional requirements. (That is, they are atomic, isolated, and consistent.) We’ll see the 

syntax for creating both durable and non-durable tables in the section on Creating Tables.  

Note: Non-durable memory-optimized table may seem similar to global temporary tables 

(indicated with ## at the beginning of the name.) and can sometimes be used for similar 

purposes. However, global temp tables are regular disk-based tables, stored on pages in the 

tempdb database, and read from and written to disk as needed. The only thing special about the 

global temp tables is that they are dropped when no longer needed. Also, like any other object 

in tempdb, neither the schema nor the data is recovered when SQL Server is restarted. A non-

durable memory-optimized table can be a part of any database that allows memory-optimized 

tables, but its data only resides in memory. Memory-optimized tables also use completely 

different structures for keeping track of the data than are used for disk-based tables, whether 

temporary or permanent.   

Indexes on memory-optimized tables    
Indexes on memory-optimized tables are not stored as traditional B-trees. Memory-optimized tables 

support hash indexes, stored as hash tables with linked lists connecting all the rows that hash to the 

same value and ‘range’ indexes, which for memory-optimized tables are stored using special BW-trees. 

The range index with BW tree can be used to quickly find qualifying rows in a range predicate just like  

traditional btree but it is designed with optimistic concurrency control with no locking/latching.  

Every memory-optimized table must have at least one index, and must have a declared primary key, 

which could then be supported by the required index.    

Indexes are never stored on disk, and are not reflected in the on-disk checkpoint files and operations on 

indexes are never logged.  The indexes are maintained automatically during all modification operations 

on memory-optimized tables, just like b-tree indexes on disk-based tables, but in case of a SQL Server 

restart, the indexes on the memory-optimized tables are rebuilt as the data is streamed into memory.  

Concurrency improvements 
When accessing memory-optimized tables, SQL Server implements an optimistic multi-version 

concurrency control. Although SQL Server has previously been described as supporting optimistic 

concurrency control with the snapshot-based isolation levels introduced in SQL Server 2005, these so-

called optimistic methods do acquire locks during data modification operations. For memory-optimized 

tables, there are no locks acquired, and thus no waiting because of blocking. In addition being lock-free, 

In-memory OLTP does not use any latches or even spinlocks.  Any synchronization between threads that 

is absolutely required to maintain consistency (for example, when updating an index pointer) is handled 

at the lowest level: a single CPU instruction (interlocked-compare and exchange), which is supported by 

all modern 64-bit processors. (For more details about this instruction, please take a look at this article: 

https://en.wikipedia.org/wiki/Compare-and-swap). 
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Note that this does not mean that there is no possibility of waiting when using memory-optimized 

tables. There may be other wait types encountered, such as waiting for a log write to complete at the 

end of a transaction, which can happen for writes to disk-based tables as well. However, logging when 

making changes to memory-optimized tables is much more efficient than logging for disk-based tables, 

so the wait times will be much shorter.  And there never will be any waits for reading data from disk, 

and no waits for locks on data rows. (Note that waiting for log writes to complete can be ameliorated 

using SQL Server’s “Delayed Durability” option, which you can read about here: 

https://msdn.microsoft.com/en-us/library/dn449490.aspx)  

Natively Compiled Modules 
The best execution performance is obtained when using natively compiled modules with memory-

optimized tables. As of SQL Server 2016, these modules include stored procedures, triggers, user-

defined scalar functions and inline table valued functions.  In addition,  there are only a few limitations 

on the Transact-SQL language constructs that are allowed inside a natively compiled stored module, 

compared to the feature set available with interpreted Transact-SQL .  

 

Using In-Memory OLTP 
The In-Memory OLTP engine was introduced in SQL Server 2014.  Installation of In-Memory OLTP is part 

of the SQL Server setup application, as it is just a part of the database engine service. The In-Memory 

OLTP components can only be installed with a 64-bit edition of SQL Server, and not available at all with a 

32-bit edition.  

Creating Databases 
Any database that will contain memory-optimized tables needs to have one 

MEMORY_OPTIMIZED_DATA filegroup. This filegroup is used for storing the data and delta file pairs 

needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating 

them is almost the same as for creating a regular filestream filegroup, it must also specify the option 

CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a 

database that can support memory-optimized tables: 

CREATE DATABASE IMDB 
    ON  
    PRIMARY          (NAME = [IMDB_data], FILENAME = 'C:\IMData\IMDB_data.mdf'),  
    FILEGROUP IMFG CONTAINS MEMORY_OPTIMIZED_DATA 
   (NAME = [IMData_dir], FILENAME = 'C:\IMData\IMData_dir'); 

 

It is also possible to add a MEMORY_OPTIMIZED_DATA filegroup to an existing database, and then files 

can be added to that filegroup. For example, if you already have the AdventureWorks2014 database, you 

can add a filegroup for memory optimized data as shown: 

ALTER DATABASE AdventureWorks2014  
   ADD FILEGROUP AW_mod CONTAINS MEMORY_OPTIMIZED_DATA; 
GO 
ALTER DATABASE AdventureWorks2014  
   ADD FILE (NAME='AW_mod', FILENAME='C:\IMData \AW_mod_dir')  
    TO FILEGROUP AW_mod_mod; 
GO 

https://msdn.microsoft.com/en-us/library/dn449490.aspx
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Once a database has a filegroup with the property CONTAINS MEMORY_OPTIMIZED_DATA, and that 

filegroup has at least one file in it, you can create memory-optimized tables in that database. The 

following query will show you the names of all the databases in an instance of SQL Server that meets 

those requirements:  

EXEC sp_MSforeachdb 'USE ? IF EXISTS (SELECT 1 FROM sys.filegroups FG  
               JOIN sys.database_files F 
        ON FG.data_space_id = F.data_space_id 
     WHERE FG.type = ''FX'' AND F.type = 2)  
           PRINT ''?'' + '' can contain memory-optimized tables.'' '; 
GO 

 

Creating Tables 
The syntax for creating memory-optimized tables is almost identical to the syntax for creating disk-based 

tables, with a few restrictions, as well as a few required extensions.  Specifying that the table is a 

memory-optimized table is done using the MEMORY_OPTIMIZED = ON clause. A memory-optimized 

table can only have columns of these supported datatypes: 

 bit 

 All integer types: tinyint, smallint, int, bigint 

 All money types: money, smallmoney 

 All floating types: float, real 

 date/time types: datetime, smalldatetime, datetime2, date, time 

 numeric and decimal types 

 All non-LOB string types: char(n), varchar(n), nchar(n),  nvarchar(n), sysname 

 Non-LOB binary types: binary(n), varbinary(n) 
 Uniqueidentifier 

 

Note that the legacy LOB data types (text, ntext and image) are not allowed; also there can be no 
columns of type XML, or CLR or the max data types. as of SQL Server 2016 CTP3. In addition, row lengths 
are limited to 8060 bytes with no off-row (row-overflow) data.  In fact, the 8060 byte limit is enforced at 
table-creation time, so unlike a disk-based table, a memory-optimized tables with two varchar(5000) 
columns could not be created. 

A memory-optimized table can be defined with one of two DURABILITY values: SCHEMA_AND_DATA or 

SCHEMA_ONLY with the former being the default. A memory-optimized table defined with 

DURABILITY=SCHEMA_ONLY, which means that changes to the table’s data are not logged and the data 

in the table is not persisted on disk. However, the schema is persisted as part of the database metadata, 

so the empty table will be available after the database is recovered during a SQL Server restart.  

 

As mentioned earlier, a memory-optimized table must always have at least one index but this 

requirement could be satisfied with the index created automatically to support a primary key constraint. 

All tables except for those created with the SCHEMA_ONLY option must have a declared primary key.  

The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count 

must also be specified.  A few guidelines for choosing a value for the bucket count will be mentioned 

when discussing details of hash index storage.  
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Single-column indexes may be created in line with the column definition in the CREATE TABLE 

statement, as shown below. The BUCKET_COUNT attribute will be discussed in the section on Hash 

Indexes.  

CREATE TABLE T1 
( 
 [Name] varchar(32) not null PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 131072), 
 [City] varchar(32) null, 
 [State_Province] varchar(32) null, 
  [LastModified] datetime not null, 
  
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 

 

Alternatively, composite indexes may be created after all the columns have been defined, as in the 

example below. The example below adds a range index to definition above.  Notice the difference in the 

specification for the two types of indexes is that one uses the keyword HASH, and the other doesn’t.  

Both types of indexes are specified as NONCLUSTERED, but if the word HASH is not used, the index is a 

range index.  

CREATE TABLE T2 
(  
 [Name] varchar(32) not null PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 131072), 
 [City] varchar(32) null, 
 [State_Province] varchar(32) null, 
  [LastModified] datetime not null, 
 
  INDEX T1_ndx_c2c3 NONCLUSTERED ([City],[State_Province])  
 
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 

 

When a memory-optimized table is created, the In-Memory OLTP engine will generate and compile DML 

routines just for accessing that table, and load the routines as DLLs. SQL Server itself does not perform 

the actual data manipulation (record cracking) on memory-optimized tables, instead it calls the 

appropriate DLL for the required operation when a memory-optimized table is accessed.  

There are only a few limitations when creating memory-optimized tables, in addition to the data type 

limitations already listed.  

 DML triggers must be created as natively compiled modules 

 FOREIGN KEY constraints must reference a PRIMARY KEY constraint (not a UNIQUE constraint) 

 IDENTITY columns can only be defined with SEED and INCREMENT of 1 

 No UNIQUE indexes other than for the PRIMARY KEY 

 A maximum of 8 indexes, including the index supporting the PRIMARY KEY 

As of SQL Server 2016, ALTER TABLE can be used on memory-optimized tables to add and drop columns, 

as well as to add and drop indexes or constraints, or alter columns or indexes.  (A few examples will be 

shown below in the section on ALTER INDEX.) Be aware that these operations will always require a 

complete rebuild of the table, and every row will be logged as it is inserted into the new table.  One 

benefit of using the ALTER TABLE instead of manually dropping and recreating the table is that if there 

are dependent objects schema bound to a memory-optimized table they will not have to be dropped 

and recreated.  
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Note Prior to SQL Server 2016, for an index to be created on a character column in a 

memory-optimized table, the column would have to have been created with a binary 

(BIN) collation. The collation could have been specified in the CREATE TABLE statement, 

or the database could have been created to use a BIN collation for all character 

columns. As of SQL Server 2016, this restriction no longer applies. The CREATE TABLE 

statements above create indexes on the Name column which does not specify a BIN 

collation.  

The catalog view sys.tables contains metadata about each of your memory-optimized tables. The 

column is_memory_optimized is a Boolean value, with a 1 indicating a memory-optimized table.  The 

durability column is translated by the durability_desc column, which has values SCHEMA_ONLY and 

SCHEMA_AND_DATA.  The following query will show you your memory-optimized tables and their 

durability: 

SELECT name, durability_desc FROM sys.tables 
WHERE is_memory_optimized = 1; 

 

Table Types and Table Variables 

In addition to creating memory-optimized tables, SQL Server 2016 allows you to create memory-

optimized table types. The biggest benefit of memory-optimized table types is the ability to use it when 

declaring a table variable as shown here: 

USE IMDB;  
CREATE TYPE SalesOrderDetailType_inmem  
AS TABLE  
( 
  OrderQty smallint NOT NULL, 
  ProductID int NOT NULL, 
  SpecialOfferID int NOT NULL, 
  LocalID int NOT NULL, 
 
  INDEX IX_ProductID NONCLUSTERED HASH (ProductID) WITH (BUCKET_COUNT = 131072), 
  INDEX IX_SpecialOfferID NONCLUSTERED (SpecialOfferID)  
)  
WITH (MEMORY_OPTIMIZED = ON );  
GO  
DECLARE @SalesDetail SalesOrderDetailType_inmem;  
GO  

 

Memory-optimized table variables can give you the following advantages when compared to disk-based 

table variables: 

 The variables are only stored in memory. Data access is more efficient because memory-

optimized table type use the same data structures used for memory-optimized tables. The 

efficientcy is increased further when the memory-optimized table variable is used in a natively 

compiled module. 

 Table variables are not stored in tempdb and do not use any resources in tempdb. 
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Row and Index Storage  
In-Memory OLTP memory-optimized tables and their indexes are stored very differently than disk-based 

tables. Memory-optimized tables are not stored on pages like disk-based tables, nor is space allocated 

from extents, and this is due to the design principle of optimizing for byte-addressable memory instead 

of block-addressable disk. 

Rows 
Rows are allocated from structures called heaps, which are different than the type of heaps SQL Server 

has supported for disk-based tables.  Rows for a single table are not necessarily stored near other rows 

from the same table.   The rows themselves have a structure very different than the row structures used 

for disk-based tables.  Each row consists of a header and a payload containing the row attributes.   

Figure 2 shows this structure, as well as expanding on the content of the header area.  

 

 

 

 

 

 

 

 

Figure 2 The structure of a row in a memory-optimized table 

 

Row header 

The header contains two 8-byte fields holding In-Memory OLTP timestamps: a Begin-Ts and an End-Ts. 

Every database that supports memory-optimized tables manages two internal counters that are used to 

generate these timestamps.  

 The Transaction-ID counter is a global, unique value that is reset when the SQL Server instance is 

restarted. It is incremented every time a new transaction starts. 

 The Global Transaction Timestamp is also global and unique, but is not reset on a restart.  This 

value is incremented each time a transaction ends and begins validation processing. The new 

value is then the timestamp for the current transaction. The Global Transaction Timestamp 

value is initialized during recovery with the highest transaction timestamp found among the 

recovered records. (We’ll see more about recovery later in this paper.)  

The value of Begin-Ts is the timestamp of the transaction that inserted the row, and the End-Ts value is 

the timestamp for the transaction that deleted the row.  A special value (referred to as ‘infinity’) is used 

as the End-Ts value for rows that have not been deleted. However, when a row is first inserted, before 

the insert transaction is completed, the transaction’s timestamp is not known so the global 

 Row header 
 Payload 

 Begin Ts End Ts StmtId IdxLinkCount   

    

 
8 bytes 8 bytes 4 bytes 2 bytes 

8 bytes * (Number of indexes) 
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Transaction_ID value is used for Begin-Ts until the transaction commits. At this time, the row is not 

visible to any other transactions. Similarly, for a delete operation, the transaction timestamp is not 

known, so the End-Ts value for the deleted rows uses the global Transaction_ID value, which is replaced 

once the real Transaction Timestamp is known. Until the transaction commits, the row will still be 

visible, as it will not yet have been actually deleted. As we’ll see when discussing data operations, once 

the transaction commits, the Begin-Ts and End-Ts values determine which other transactions will be 

able to see this row.    

The header also contains a four-byte statement ID value.  Every statement within a transaction has a 

unique StmtId value, and when a row is created it stores the StmtId for the statement that created the 

row. If the same row is then accessed again by the same statement, it can be skipped. For example, an 

UPDATE statement will not update rows written by itself. Thhe StmtId is used to enforce Halloween 

Protection. (Describing this behavior in detail is beyond the scope of this paper, but there are many 

articles and blog posts you can find online about “The Halloween Problem” and “Halloween 

Protection”.)  

Finally, the header contains a two-byte value (idxLinkCount) which is really a reference count indicating 

how many indexes reference this row. Following the idxLinkCount value is a set of index pointers, which 

will be described in the next section. The number of pointers is equal to the number of indexes. The 

reference value of 1 that a row starts with is needed so the row can be referenced by the garbage 

collection (GC) mechanism even if the row is no longer connected to any indexes. The GC is considered 

the ‘owner’ of the initial reference.  

 

Payload area 

The payload is the row itself, containing the key columns plus all the other columns in the row.  (So this 

means that all indexes on a memory-optimized table are actually covering indexes (i.e. the leaf node has 

all the columns from the table.) The payload format can vary depending on the table. As mentioned 

earlier in the section on creating tables, the In-Memory OLTP compiler generates the DLLs for table 

operations, and because it knows the payload format used when inserting rows into a table, it can also 

generate the appropriate commands for all row operations.  

Indexes On Memory-Optimized Tables  
All memory-optimized tables must have at least one index, because it is the indexes that connect the 

rows together. As mentioned earlier, data rows are not stored on pages, so there is no collection of 

pages or extents, no partitions or allocation units, that can be referenced to get all the pages for a table. 

There is some concept of index pages for one of the types of indexes, but they are stored differently 

than indexes for disk-based tables.  

In-Memory OLTP indexes, and changes made to them during data manipulation, are never written to 

disk.  Only the data rows, and changes to the data, are written to the transaction log. All indexes on 

memory-optimized tables are created based on the index definitions during database recovery.  We’ll 

cover details of in the Checkpoint and Recovery section below. 

Hash Indexes 

A hash index consists of an array of pointers, and each element of the array is called a hash bucket. The 

index key column in each row has a hash function applied to it, and the result of the function determines 
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which bucket is used for that row.  All key values that hash to the same value (have the same result from 

the hash function) are accessed from the same pointer in the hash index and are linked together in a 

chain. When a row is added to the table, the hash function is applied to the index key value in the row.  

If there is duplication of key values, the duplicates will always generate the same function result and 

thus will always be in the same chain.  

Figure 3 shows one row in a hash index on a name column. For this example, assume there is a very 

simple hash function that results in a value equal to the length of the string in the index key column. The 

first value of ‘Jane’ will then hash to 4, which is the first bucket in the hash index so far.  (Note that the 

real hash function is much more random and unpredictable, but I am using the length example to make 

it easier to illustrate.) You can see the pointer from the 4 entry in the hash table to the row with Jane. 

That row doesn’t point to any other rows, so the index pointer in the record is NULL.  

 

 

 

Figure 3 A hash index with a single row 

In Figure 4, a row with a name value of Greg has been added to the table. Since we’ll assume that Greg 

also maps to 4, it hashes to the same bucket as Jane, and the row is linked into the same chain as the 

row for Jane. The Greg row has a pointer to the Jane row.   
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Figure 4 A hash index with two rows 

 

A second hash index included in the table definition on the City column creates a second pointer field.  

Each row in the table now has two pointers pointing to it, and the ability to point to two more rows, one 

for each index. The first pointer in each row points to the next value in the chain for the Name index; the 

second pointer points to the next value in the chain for the City index. Figure 5 shows the same hash 

index on Name, this time with three rows that hash to 4, and two rows that hash to 5, which uses the 

second bucket in the Name index.  The second index on the City column uses three buckets. The bucket 

for 6 has three values in the chain, the bucket for 7 has one value in the chain, and the bucket for 8 also 

has one value.  

  

 

Figure 5 Two hash indexes on the same table 

 

When a hash index is created, you must specify a number of buckets, as shown in the CREATE TABLE 

example above.  It is recommended that you choose a number of buckets that is one to two times  the 
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expected cardinality (the number of unique values) of the index key column so that there will be a 

greater likelihood that each bucket will only have rows with a single value in its chain.   Be careful not to 

choose a number that is too big however, because each bucket uses 8 bytes of memory. The number 

you supply is rounded up to the next power of two, so a value of 1,000,000 will be rounded up to 

1,048,576 buckets, or 8 MB of memory space.  Having extra buckets will not improve performance but 

will simply waste memory and possible reduce the performance of scans which will have to check each 

bucket for rows. However, it is generally better to have too many buckets than too few.  

When deciding to build a hash index, keep in mind that the hash function actually used is based on ALL 

the key columns.  This means that if you have a hash index on the columns: lastname, firstname in an 

employees table, a row with the values “Harrison” and “Josh” will probably hash to a different bucket 

than a row with the values “Harrison” and “John”. A query that just supplies a lastname value, or one 

with an inexact firstname value (such as “Jo%”) will not be able to use the index at all.  

Range Indexes  

If you have no idea of the number of buckets you’ll need for a particular column, or if you know you’ll be 

searching your data based on a range of values, you should consider creating a range index instead of a 

hash index. Range indexes are implemented using a new data structure called a Bw-tree, originally 

envisioned and described by Microsoft Research in 2011. A Bw-tree is a lock- and latch-free variation of 

a B-tree.  

The general structure of a Bw-tree is similar to SQL Server’s regular B-trees, except that the index pages 

are not a fixed size, and once they are built they are unchangeable.  Like a regular B-tree page, each 

index page contains a set of ordered key values, and for each value there is a corresponding pointer. At 

the upper levels of the index, on what are called the internal pages, the pointers point to an index page 

at the next level of the tree, and at the leaf level, the pointers point to a data row.  Just like for In-

Memory OLTP hash indexes, multiple data rows can be linked together. In the case of range indexes, 

rows that have the same value for the index key will be linked.  

One big difference between Bw-trees and SQL Server’s B-trees is that a page pointer is a logical page ID 

(PID), instead of a physical page number. The PID indicates a position in a mapping table, which 

connects each PID with a physical memory address.  Index pages are never updated; instead, they are 

replaced with a new page and the mapping table is updated so that the same PID indicates a new 

physical memory address.   

Figure 6 shows the general structure of Bw-tree, plus the Page Mapping Table.  
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Figure 6 The general structure of a Bw-Tree 

  

Not all the PID values are indicated in Figure 6, and the Mapping Table does not show all the PID values 

that are in use. The index pages are showing key values for this index. Each index row in the internal 

index pages contains a key value (shown) and a PID of a page at the next level down. The key value is the 

highest value possible on the page referenced. (Note this is different than a regular B-tree index, for 

which the index rows stores the minimum value on the page at the next level down.)  

The leaf level index pages also contain key values, but instead of a PID, they contain an actual memory 

address of a data row, which could be the first in a chain of data rows, all with the same key value.  (You 

can note another difference compared to regular B-tree indexes in that the leaf pages will not contain 

duplicates in the Bw-Tree. If a key value occurs multiple times in the data, there will a chain of rows 

pointed to by the entry in the leaf. ) 

Another big difference between Bw-trees and SQL Server’s B-trees is that at the leaf level, data changes 

are kept track of using a set of delta values.  The leaf pages themselves are not replaced for every 

change.  Each update to a page, which can be an insert or delete of a key value on that page, produces a 

page containing a delta record indicating the change that was made. An update is represented by two 

new delta records, one for the delete of the original value, and one for the insert of the new value.  

When each delta record is added, the mapping table is updated with the physical address of the page 

containing the newly added delta record.  Figure 7 illustrates this behavior.  The mapping table is 

showing only a single page with logical address P. The physical address in the mapping table originally 

was the memory address of the corresponding leaf level index page, shown as Page P. After a new row 

with index key value 50 (which we’ll assume did not already occur in the table’s data) is added to the 

table, In-Memory OLTP adds the delta record to Page P, indicating the insert of the new key, and the 

physical address of page P is updated to indicate the address of the first delta record page. Assume then 

that the only row with index key value 48 is deleted from the table. In-Memory OLTP must then remove 

the index row with key 48, so another delta record is created, and the physical address for page P is 

updated once again.  
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Figure 7 Delta records linked to a leaf level index page 

When searching through a range index, SQL Server must combine the delta records with the base page, 

making the search operation a bit more expensive. However, not having to completely replace the leaf 

page for every change gives us a performance savings. As we'll see in the later section, Consolidating 

Delta Records, eventually SQL Server will combine the original page and chain of delta pages into a new 

base page. 

 

Index page structures 

In-Memory OLTP range index pages are not a fixed size as they are for indexes on disk-based tables, 

although the maximum index page size is still 8 KB.  

Range index pages for memory-optimized tables all have a header area which contains the following 

information: 

 PID - the pointer into the mapping table 

 Page Type - leaf, internal, delta or special 

 Right PID - the PID of the page to the right of the current page 

 Height – the vertical distance from the current page to the leaf  

 Page statistics – the count of delta records plus the count of records on the page 

 Max Key – the upper limit of values on the page 

In addition, both leaf and internal pages contains two or three fixed length arrays: 

 Values – this is really a pointer array. Each entry in the array is 8 bytes long. For internal pages 

the entry contains PID of a page at the next level and for a leaf page, the entry contains the 

memory address for the first row in a chain of rows having equal key values. (Note that 

technically, the PID could be stored in 4 bytes, but to allow the same values structure to be used 

for all index pages, the array allows 8 bytes per entry.) 

 Offsets – this array exists only for pages of indexes with variable length keys.  Each entry is 2 

bytes and contains the offset where the corresponding key starts in the key array on the page.  
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 Keys – this is the array of key values. If the current page is an internal page, the key represents 

the first value on the page referenced by the PID. If the current page is a leaf page, the key is the 

value in the chain of rows.  

The smallest pages are typically the delta pages, which have a header which contains most of the same 

information as in an internal or leaf page. However delta page headers don’t have the arrays described 

for leaf or internal pages. A delta page only contains an operation code (insert or delete) and a value, 

which is the memory address of the first row in a chain of records. Finally, the delta page will also 

contain the key value for the current delta operation. In effect you can think of a delta page as being a 

mini-index page holding a single element whereas the regular index pages store an array of N elements. 

Bw-tree internal  reorganization operations 

There are three different operations that  SQL Server might  need to perform while managing the 

structure of a Bw-tree: consolidation, split and merge. For all of these operations, no changes are made 

to existing index pages. Changes may be made to the mapping table to update the physical address 

corresponding to a PID value. If an index page needs to add a new row (or have a row removed) a whole 

new page is created and the PID values are updated in the Mapping Table. 

Consolidating delta records 

A long chain of delta records can eventually degrade search performance, if SQL Server has to consider 

the changes in the delta records along with the contents of the index pages when it’s searching through 

an index.  If In-Memory OLTP attempts to add a new delta record to a chain that already has 16 

elements, the changes in the delta records will be consolidated into the referenced index page, and the 

page will then be rebuilt, including the changes indicated by the new delta record that triggered the 

consolidation.  The newly rebuilt page will have the same PID but a new memory address.  The old pages 

(index page plus delta pages) will be marked for garbage collection.  

Splitting of a full index page 

An index page in Bw-Tree grows on an as-needed basis, starting from storing a single row to storing a 

maximum of 8K bytes. Once the index page grows to 8K bytes, a new insert of a single row will cause the 

index page to split. For an internal page, this means when there is no more room to add another key 

value and pointer, and for a leaf page, it means that the row would be too big to fit on the page once all 

the delta records are incorporated. 

The statistics information in the page header for a leaf page keeps track of how much space would be 

required to consolidate the delta records, and that information is adjusted as each new delta record is 

added. The easiest way to visualize how a page split occurs is to walk through an example. Figure 8 

shows a representation of the original structure, where Ps is the page to be split into pages P1 and P2, 

and the Pp is its parent page, with a row that points to Ps. Keep in mind that a split can happen at any 

level of an index, so it not specified whether Ps is a leaf page or an internal page. It could be either. 
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Figure 8: Attempting to insert a new row into a full index page. 

Assume we have executed an INSERT statement that inserts a row with key value of 5 into this table, 

so that 5 now needs to be added to the range index. The first entry in Page Pp is a 5, which means 5 is 

the maximum value that could occur on the page to which Pp points, which is Ps. Page Ps doesn't 

currently have a value 5, but page Ps is where the 5 belongs. However, the Page Ps is full that it is unable 

to add the key value 5 to the page, so it has to split. 

The split operation occurs in two atomic steps, as described in the next two sections. 

Step 1: Allocate new pages, split the rows 

Step1 allocates two new pages, P1 and P2, and splits the rows from page Ps onto these pages, including 

the newly inserted row. A new slot in the Page Mapping table stores the physical address of page P2. 

These pages, P1 and P2 are not yet accessible to any concurrent operations and those will see the 

original page Ps. In addition, the 'logical' pointer from P1to P2 is set. Figure 9 shows the changes, where 

P1 contains key values 1 thru 3 and P2 contains key values 4 and 5.  

 

Figure 9: Splitting a full index page into two pages. 

In the same atomic operation as splitting the page, SQL Server updates the Page Mapping Table to 

change the pointer to point to P1 instead of Ps. After this operation, Page Pp points directly to Page P1; 

there is no pointer to page Ps, as shown in Figure 10. 
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Figure 10: The pointer from the parent points to the first new child page. 

Step 2: Create a new Pointer 

Eventually, all pages should be directly accessible from the higher level but for a brief period, after Step 

1, the parent page Pp points to P1 but there is no direct pointer from Pp to page P2, although P2 contains the 

highest value that exists on P2, which is 5 . P2 can be reached only via page P1. 

To create a pointer from Pp to page P2, SQL Server allocates a new parent page Ppp, copies into it all the 

rows from page Pp, adds a new row to point to page P1, which holds the maximum key value of the rows 

on P1 which is 3, as shown in Figure 11.  

 

Figure 4-10: A new parent page is created. 

In the same atomic operation as creating the new pointer, SQL Server then updates the Page Mapping 

Table to change the pointer from Pp to Ppp, as shown in Figure 12. 

 

Figure 12: After the split is complete. 
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Merging of adjacent index pages 

When a DELETE operation leaves an index page P with less than 10% of the maximum page size 

(currently 8K), or with a single row on it, SQL Server will merge page P with its neighboring page. When a 

row is deleted from page P, SQL Server adds a new delta record for the delete, as usual, and then checks 

to see if the remaining space after deleting the row will be less than 10% of maximum page size. If it will 

be then Page P qualifies for a Merge operation.  

Again, to illustrate how this works, we'll walk through a simple example, which assumes we'll be 

merging a page P with its left neighbor, Page Pln, that is, one with smaller values. 

Figure 13 shows a representation of the original structure where page Pp, the parent page, contains a 

row that points to page P. Page Pln has a maximum key value of 8, meaning that the row in Page Pp that 

points to page Pln contains the value 8. We will delete from page P the row with key value 10, leaving 

only one row remaining, with the key value 9. 

 

Figure 13: Index pages prior to deleting row 10. 

The merge operation occurs in three atomic steps, as described over the following sections. 

Step 1: Create New Delta pages for delete 

SQL Server creates a delta page, DP10, representing key value 10 and its pointer is set to point to Page P. 

Additionally, SQL Server creates a special 'merge-delta page', DPm, and links it to point to DP10. At this 

stage, neither DP10 nor DPm are visible to any concurrent transactions. 

In the same atomic step, SQL Server updates the pointer to page P in the Page Mapping Table is to point 

to DPm. After this step, the entry for key value 10 in parent page Pp now points to DPm. 

  

Figure 14: The delta page and the merge-delta page are added to indicate a deletion. 
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Step 2: Create a new non-leaf page with correct index entries 

In step 2, SQL Server removes the row with key value 8 in page Pp (since 8 will no longer be the high 

value on any page) and updates the entry for key value 10 (DP10) to point to page Pln. To do this, it 

allocates a new non-leaf page, Pp2, and copies to it all the rows from Pp except for the row representing 

key value 8.  

Once this is done, in the same atomic step, SQL Server updates the page mapping table entry pointing to 

page Pp to point to page Pp2. Page Pp is no longer reachable. This is shown in Figure 15.  

 

Figure 15: Pointers are adjusted to get ready for the merge. 

Step 3: Merge pages, remove deltas 

In the final step, SQL Server merges the leaf pages P and Pln and removes the delta pages. To do this, it 

allocates a new page, Pnew, merges the rows from P and Pln, and includes the delta page changes in the 

new Pnew. Finally, in the same atomic operation, SQL Server updates the page mapping table entry 

currently pointing to page Pln so that it now points to page Pnew. At this point, the new page, as shown in 

Figure 16, is available to any concurrent transactions. 

 

Figure 16: After the merge is completed. 

 

 Columnstore Indexes  

In SQL Server 2012 in which columnstore indexes were introduced, and SQL Server 2014, in which 

updateable clustered columnstore indexes were added, these indexes were intended for analytics, 

including reports and analysis. In-memory OLTP, on the other hand, as the name ‘OLTP’ implies, was 

intended for operational data that was very quickly growing and changing. However, in many systems 
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the line is blurred as to what data is operational and what is for analytics and the same data needs to be 

available for both purposes. Instead of bending each solution (columnstore indexes and memory-

optimized tables)  to do what they are not designed to do, that is, to force memory-optimized tables to 

be better with analytic queries and columnstore indexes to be better with OLTP data modification – and 

eventually end up with half-baked solutions, SQL Server 2016 provides a solution that leverages both 

technologies in their own strength and hide the seams and storage details from the users.  

Columnstore Index Basic Architecture  

Because SQL Server 2016 provides support for building clustered columnstore indexes on memory-

optimized tables, this paper will provide a high-level overview of columnstore index architecture.  It is 

beyond the scope of this document to discuss all the details of columnstore indexes, but a basic 

understanding of columnstore index storage will be useful to understand the special considerations for 

columnstore indexes on memory-optimized tables.  

Columnstore indexes, which are typically wide composite indexes, are not organized as rows, but as 

columns. Rows from a single partition are grouped in row groups of about one million rows each. (The 

actual maximum is 220 or 1,048,576 rows per group.) SQL Server will attempt to put the full 220 values in 

each row group, leaving a final row group with whatever leftover rows there are. For example, if there 

are exactly 10 million rows in a table, each column in a columnstore index could have 9 segments of 

1,048,576 values and one of 562,816 values. However, because the index is usually built in parallel, with 

each thread processing its own subset of rows, there may be multiple row groups with fewer than the 

full 1,048,576 values.  

. Within each row group, SQL Server applies its Vertipaq compression technology which encodes the 

values and then rearranges the rows within the rowgroup to give the best compression results. Each 

index column in each row group is stored separately, in a structure called a segment. Each segment is 

stored as a Large Object (LOB) value, and stored in LOB allocation unit for the partition. Segments are 

the basic unit of manipulation and can be read and written separately. Figure 17 illustrates the encoding 

and conversion of a set of values for multiple index columns into several segments.  
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 Figure 17. Transforming columnstore index columns into segments 

The table in Figure 17 has been divided into three row groups where all four columns from the table are 

defined as part of the columnstore index. We end up with 12 compressed column segments, three 

segments for each of the four columns..  

 

The compressed row groups for a clustered columnstore index on a memory-optimized table are stored 

separately from the rows accessible from the memory-optimized nonclustered indexes described above 

(the hash and range indexes) and are basically a copy of the data. All segments are all fully resident in 

memory at all all times. For recovery purposes, each rowgroup of the clustered columnstore index is 

stored in a separate file in the memory-optimized filegroup, with a type of LARGE DATA.  These files are 

discussed below in the section on CHECKPOINT FILES. As new rows are added to a memory-optimized 

table with a columnstore index, they are not immediately added to the compressed rowgroups of the 

columnstore index; instead, the new rows are considered the ‘tail’ of the memory-optimized table and 

are  only available as regular rows accessible through any of the other memory-optimized table’s 

indexes.  

 

 

If a SQL Server 2016 memory-optimized table has a clustered columnstore index, new rows will be 

allocated from a specific memory allocator. This allows SQL Server to quickly identify the rows that are 

not yet compressed into segments in the columnstore index.  These rows become eligible for 

compression if they have not been modified for one hour. A background thread wakes up every 2 
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minutes and examines the rows that have not been modified for one hour. If the count of such rows 

exceeds 1 million, the thread performs the following two operations: when 

1. The rows are copied into one or more rowgroups, from which each of the segments will 

compressed and encoded to become part of the clustered columnstore index. 

2. The rows will be moved from the special memory allocator to the regular memory storage 

with the rest of the rows from the table. 

 

Index Metadata 

Index metadata is available in several catalog views and DMVs.  The sys.indexes view contains one row 

for each index on each memory-optimized table.  The type column will have one of the following values 

for the indexes on a memory-optimized table:  

Type 2:  Nonclustered (range) 

Type 5: Clustered columnstore 

Type 7: Nonclustered hash 

The following query will show you all your indexes on your memory-optimized tables: 

SELECT t.name AS table_name, i.name AS index_name, index_id, i.type, i.type_desc 
FROM sys.tables t JOIN sys.indexes i 
 ON t.object_id = i.object_id 
WHERE is_memory_optimized = 1; 
GO 

  

In addition, the view sys.hash_indexes, which contains all the columns from sys.indexes, but only the 

rows where type = 7,   has one additional column: bucket_count.  

Storage space used by your memory-optimized tables and their indexes is shown in the DMV 

sys.dm_db_xtp_table_memory_stats. The following query lists each memory-optimized table and the 

space used. 

SELECT object_name(object_id) AS 'Object name', *  
FROM sys.dm_db_xtp_table_memory_stats; 
GO 

 

Other DMVs will be described later, as they become relevant to the topics discussed.  

Altering Indexes  

As of SQL Server 2016, ALTER TABLE can be used to add and drop indexes, add and drop constraints and 

change the number of hash buckets in a hash index. It can also be used to add,r drop or alter columns 

from a memory-optimized table. Each ALTER TABLE will require a complete rebuild of the table, even if 

you’re just changing the number of buckets in a hash index, so you’ll need to make sure you have 

sufficient memory available before running this command. As the table is being rebuilt, each row will be 

reinserted into the new table, and will be logged as a separate INSERT. In addition, the table will be 

unavailable while the ALTER operation is being performed.  If multiple changes need to be made to the 
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indexes of a single table, it is recommended that you include them all in a single ALTER TABLE command 

wherever possible, so that the table will only need to be rebuilt once.  

Here are some code examples illustrating the SQL Server 2016 ALTER TABLE operations on memory-

optimized table: 

USE IMDB 
GO 
 
IF object_id('dbo.OrderDetails') IS NOT NULL 
  DROP TABLE dbo.OrderDetails; 
GO 
 
-- create a simple table 
CREATE TABLE dbo.OrderDetails 
( 
 OrderID int NOT NULL, 
 ProductID int NOT NULL, 
 UnitPrice money NOT NULL, 
 Quantity smallint NOT NULL, 
 Discount real NOT NULL 
 
 INDEX IX_OrderID NONCLUSTERED HASH (OrderID) WITH ( BUCKET_COUNT = 1048576), 
 INDEX IX_ProductID NONCLUSTERED HASH (ProductID) WITH ( BUCKET_COUNT = 131072), 
 CONSTRAINT PK_Order_Details PRIMARY KEY  
  NONCLUSTERED HASH (OrderID, ProductID) WITH ( BUCKET_COUNT = 1048576) 
) WITH ( MEMORY_OPTIMIZED = ON , DURABILITY = SCHEMA_AND_DATA ); 
 
GO 
 
-- index operations 
 
-- change hash index bucket count 
ALTER TABLE dbo.OrderDetails  
 ALTER INDEX IX_OrderID 
  REBUILD WITH (BUCKET_COUNT=2097152); 
GO 
 
-- add index 
ALTER TABLE dbo.OrderDetails 
 ADD INDEX IX_UnitPrice NONCLUSTERED (UnitPrice); 
GO 
 
-- drop index 
ALTER TABLE dbo.OrderDetails 
 DROP INDEX IX_UnitPrice; 
GO 
 
-- combine 
ALTER TABLE dbo.OrderDetails  
 ADD INDEX IX_UnitPrice NONCLUSTERED (UnitPrice), 
  INDEX IX_Quantity NONCLUSTERED HASH (Quantity) WITH ( BUCKET_COUNT = 131072); 
GO 
 
-- Add a new column 
 
ALTER TABLE dbo.OrderDetails 
 ADD ModifiedDate datetime;   
GO  
 
-- Drop a column 
ALTER TABLE dbo.OrderDetails 
 DROP COLUMN Discount; 
GO 

 

Data Operations   
SQL Server In-Memory OLTP determines what row versions are visible to what transactions by 

maintaining an internal Transaction ID that serves the purpose of a timestamp, and will be referred to as 

a timestamp in this discussion.  The timestamps are generated by a monotonically increasing counter 

which increases every time a transaction commits. A transaction’s start time is the highest timestamp in 

the database at the time the transaction starts, and when the transaction commits, it generates a new 
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timestamp which then uniquely identifies that transaction. Timestamps are used to specify the 

following: 

 Commit/End Time: every transaction that modifies data commits at a distinct point in time 
called the commit or end timestamp of the transaction.  The commit time effectively identifies 
a transaction’s location in the serialization history. 
 

 Valid Time for a version of a record:  As shown in Figure 2, all records in the database contain 
two timestamps –the begin timestamp (Begin-Ts) and the end timestamp (End-Ts).  The begin 
timestamp denotes the commit time of the transaction that created the version and the end 
timestamp denotes the commit timestamp of the transaction that deleted the version (and 
perhaps replaced it with a new version).  The valid time for a record version denotes the range 
of timestamps where the version is visible to other transactions.  In Figure 5, Susan’s record is 
updated at time “90” from Vienna to Bogota as an example.  

 
Logical Read Time: the read time can be any value between the transaction’s begin time and 
the current time. Only versions whose valid time overlaps the logical read time are visible to the 
read. For all isolation levels other than read-committed, the logical read time of a transaction 
corresponds to the start of the transaction 

The notion of version visibility is fundamental to proper concurrency control in In-Memory OLTP.  A 

transaction executing with logical read time RT must only see versions whose begin timestamp is less 

than RT and whose end timestamp is greater than RT.  

Isolation Levels Allowed with Memory-Optimized Tables  

Data operations on memory-optimized tables always use optimistic multi version concurrency control 

(MVCC).  Optimistic data access does not use locking or latching to provide transaction isolation. We’ll 

look at the details of how this lock and latch free behavior is managed, as well as details on the reasons 

for the allowed transaction isolation levels in a later section. In this section, we’ll only be discussing the 

details of transaction isolation level necessary to understand the basics of data access and modification 

operations.  

The following isolation levels are supported for transactions accessing memory-optimized tables. 

 SNAPSHOT 
 REPEATABLE READ 
 SERIALIZABLE 

The transaction isolation level must be specified as part of the ATOMIC block of a natively compiled 
stored procedure. When accessing memory-optimized tables from interpreted Transact-SQL, the 
isolation level should  be specified using table-level hints or a new database option called 
MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT. This option will be discussed later, after we have looked 
at isolation levels for accessing memory-optimized tables.  

The isolation level READ COMMITTED is supported for memory optimized tables with autocommit 
(single statement) transactions. It is not supported with explicit or implicit user transactions. (Implicit 
transactions are those invoked under the session option IMPLICIT_TRANSACTIONS. In this mode, 
behavior is the same as for an explicit transaction, but no BEGIN TRANSACTION statement is required. 
Any DML statement will start a transaction, and the transaction must be explicitly either committed or 
rolled back. Only the BEGIN TRANSACTION is implicit.) Isolation level READ_COMMITTED_SNAPSHOT is 
supported for memory-optimized tables with autocommit transactions and only if the query does not 
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access any disk-based tables. In addition, transactions that are started using interpreted Transact-SQL 
with SNAPSHOT isolation cannot access memory-optimized tables. Transactions that are started using 
interpreted Transact-SQL with either REPEATABLE READ or SERIALIZABLE isolation must access memory-
optimized tables using SNAPSHOT isolation.  

 

Given the in-memory structures for rows previously described, let’s now look at how DML operations 

are performed by walking through an example.  We will indicate rows by listing the contents in order, in 

angle brackets.  Assume we have a transaction TX1 with transaction ID 100 running at SERIALIZABLE 

isolation level that starts at timestamp 240 and performs two operations: 

 DELETE the row <Greg , Lisbon> 

 UPDATE  <Jane, Helsinki> to <Jane, Perth>    

 

Concurrently, two other transactions will read the rows.  TX2 is an auto-commit, single statement 

SELECT that runs at timestamp 243.  TX3 is an explicit transaction that reads a row and then updates 

another row based on the value it read in the SELECT; it has a timestamp of 246. 

First we’ll look at the data modification transaction. The transaction begins by obtaining a begin 

timestamp that indicates when it began relative to the serialization order of the database.  In our 

example, that timestamp is 240. 

While it is operating, transaction TX1 will only be able to access records that have a begin timestamp 

less than or equal to 240 and an end timestamp greater than 240.  

Deleting 

Transaction TX1 first locates <Greg, Lisbon> via one of the indexes.  To delete the row, the end 

timestamp on the row is set to 100 with an extra flag bit indicating that the value is a transaction ID.   

Any other transaction that now attempts to access the row finds that the end timestamp contains a 

transaction ID (100) which indicates that the row may have been deleted. It then locates TX1 in the 

transaction map and checks if transaction TX1 is still active to determine if the deletion of <Greg , 

Lisbon> has been completed or not. 

Updating and Inserting 

Next the update of <Jane, Helsinki> is performed by breaking the operation into two separate 

operations: DELETE the entire original row, and INSERT a complete new row.   This begins by 

constructing the new row <Jane, Perth> with begin timestamp 100 containing a flag bit indicating that it 

is a transaction ID, and then setting the end timestamp to ∞ (infinity).  Any other transaction that 

attempts to access the row will need to determine if transaction TX1 is still active to decide whether it 

can see <Jane, Perth> or not. Then <Jane, Perth> is inserted by linking it into both indexes.  Next <Jane, 

Helsinki> is deleted just as described for the DELETE operation in the preceding paragraph.  Any other 

transaction that attempts to update or delete <Jane, Helsinki> will notice that the end timestamp does 

not contain infinity but a transaction ID, conclude that there is write-write conflict, and immediately 

abort.  

At this point transaction TX1 has completed its operations but not yet committed.  Commit processing 

begins by obtaining an end timestamp for the transaction.  This end timestamp, assume 250 for this 

example, identifies the point in the serialization order of the database where this transaction’s updates 
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have logically all occurred.  In obtaining this end timestamp, the transaction enters a state called 

validation where it performs checks to ensure it that there are no violations of the current isolation 

level.  If the validation fails, the transaction is aborted. More details about validation are covered 

shortly. SQL Server will also write to the transaction log at the end of the validation phase.    

Transactions track all of their changes in a write set that is basically a list of delete/insert operations with 

pointers to the version associated with each operation. The write set for this transaction, and the 

changed rows, are shown in the green box in Figure 18. This write set forms the content of the log for 

the transaction.  Transactions normally generate only a single log record that contains its ID and commit 

timestamp and the versions of all records it deleted or inserted.  There will not be separate log records 

for each row affected as there are for disk-based tables. However, there is an upper limit on the size of a 

log record, and if a transaction on memory-optimized tables exceeds the limit, there can be multiple log 

records generated. Once the log record has been hardened to storage the state of the transaction is 

changed to committed and post-processing is started. 

Post-processing involves iterating over the write set and processing each entry as follows: 

 For a DELETE operation,  set the row’s end timestamp to the end timestamp of the transaction (in 
this case 250) and clear the type flag on the row’s end timestamp field. 

 For an INSERT operation, set the affected row’s begin timestamp to the end timestamp of the 
transaction (in this case 250) and clear the type flag on the row’s begin timestamp field 
 

The actual unlinking and deletion of old row versions is handled by the garbage collection system, which 

will be discussed below.  

 

 

Figure 18 Transactional Modifications on a table 

 



 

33 
 

 

Reading 

Now let’s look at the read transactions, TX2 and TX3, which will be processed concurrently with TX1. 

Remember that TX1 is deleting the row <Greg , Lisbon> and updating <Jane, Helsinki> to <Jane, Perth> .  

TX2 is an autocommit transaction that reads the entire table:  

SELECT Name, City  
FROM T1 

 

TX2’s session is running in the default isolation level READ COMMITTED, but as described above, 

because no hints are specified, and T1 is memory-optimized table, the data will be accessed using 

SNAPSHOT isolation. Because TX2 runs at timestamp 243, it will be able to read rows that existed at that 

time.  It will not be able to access <Greg, Beijing> because that row no longer is valid at timestamp 243. 

The row <Greg, Lisbon> will be deleted as of timestamp 250, but it is valid between timestamps 200 and 

250, so transaction TX2 can read it. TX2 will also read the <Susan, Bogota> row and the <Jane, Helsinki> 

row. 

TX3 is an explicit transaction that starts at timestamp 246. It will read one row and update another 

based on the value read.  

DECLARE @City nvarchar(32); 
BEGIN TRAN TX3 
   SELECT @City = City  
   FROM T1 WITH (REPEATABLEREAD) 
   WHERE Name = 'Jane'; 
   UPDATE T1 WITH (REPEATABLEREAD) 
   SET City = @City 
   WHERE Name = 'Susan'; 
COMMIT TRAN  -- commits at timestamp 255 

In TX3, the SELECT will read the row <Jane, Helsinki> because that row still is accessible as of timestamp 

243. It will then update the <Susan, Bogota> row to <Susan, Helsinki>. However, if transaction TX3 tries 

to commit after TX1 has committed, SQL Server will detect that the <Jane, Helsinki> row has been 

updated by another transaction.  This is a violation of the requested REPEATABLE READ isolation, so the 

commit will fail and transaction TX3 will roll back. We’ll see more about validation in the next section. 

 

T-SQL Support 

Memory-optimized tables can be accessed in two different ways: either through interop, using 

interpreted Transact-SQL, or through natively compiled stored procedures.   

Interpreted Transact-SQL 

When using the interop capability, you will have access to virtually the full Transact-SQL surface area 

when working with your memory-optimized tables, but you should not expect the same performance as 

when you access memory-optimized tables using natively compiled stored procedures.  Interop is the 

appropriate choice when running ad hoc queries, or to use while migrating your applications to In-

Memory OLTP, as a step in the migration process, before migrating the most performance critical 

procedures.  Interpreted Transact-SQL should also be used when you need to access both memory-

optimized tables and disk-based tables.  
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The only Transact-SQL features not supported when accessing memory-optimized tables using interop 

are the following: 

 TRUNCATE TABLE 

 MERGE (when a memory-optimized table is the target) 

 Dynamic and keyset cursors (these are automatically degraded to static cursors) 

 Cross-database queries 

 Cross-database transactions 

 Linked servers 

 All locking hints: TABLOCK, XLOCK, PAGLOCK,  etc. (NOLOCK is supported, but is quietly ignored.) 

 Isolation level hints READUNCOMMITTED, READCOMMITTED and READCOMMITTEDLOCK 

 Other table hints: IGNORE_CONSTRAINTS, IGNORE_TRIGGERS, NOWAIT, READPAST, 
SPATIAL_WINDOW_MAX_CELLS 
 

T-SQL in Natively Compiled Procedures 

Natively compiled stored procedures allow you to execute Transact-SQL in the fastest way, which 

includes accessing data in memory-optimized tables. There are however, many more limitations on the 

Transact-SQL that is allowed in these procedures.  There are also limitations on the data types and 

collations that can be accessed and processed in natively compiled procedures. Please refer to the 

documentation for the full list of supported Transact-SQL statements, data types and operators that are 

allowed.  In addition, disk-based tables are not allowed to be accessed at all inside natively compiled 

stored procedures.   

The reason for the restrictions is due to the fact that internally, a separate function must be created for 

each operation on each table.  Many of the restrictions on Transact-SQL in natively compiled procedures 

in SQL Server 2014 have been removed in SQL Server 2016, and more will be rem oved in subsequent 

versions.  Some of the constructs that are available in  natively compiled procedures in SQL Server 2016 

that were not available in SQL Server 2014 are the following: 

 LEFT and RIGHT OUTER JOIN 

 SELECT DISTINCT 

 OR and NOT operators 

 Subqueries in all clauses of a SELECT statement 

 Nested stored procedure calls 

 UNION and UNION ALL 

 All built-in math functions 

 Some security functions 

 Scalar user-defined functions 

 Inline table-valued functions 

 EXECUTE AS CALLER 

For the full list of support features in natively compiled procedures please refer to the documentation:  

https://msdn.microsoft.com/en-us/library/dn452279.aspx  

Garbage Collection of Rows in Memory 

Because In-Memory OLTP is a multi-versioning system, your DELETE and UPDATE operations (as well as 

aborted INSERT operations) will generate row versions that will eventually become stale, which means 

https://msdn.microsoft.com/en-us/library/dn452279.aspx
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they will no longer be visible to any transaction.  These unneeded versions will slow down scans of index 

structures and create unused memory that needs to be reclaimed. 

The garbage collection process for stale versions in your memory-optimized tables is analogous to the 

version store cleanup that SQL Server performs for disk-based tables using one of the snapshot-based 

isolation levels. Unlike disk-based tables where row versions are kept in TempDB, the row verisons for 

memory-optimized tables are maintained  in the in-memory table structures themselves.  

To determine which rows can be safely deleted, the system keeps track of the timestamp of the oldest 

active transaction running in the system, and uses this value to determine which rows are still 

potentially needed. Any rows that are not valid as of this point in time (that is, their end-timestamp is 

earlier than this time) are considered stale. Stale rows can be removed and their memory can be 

released back to the system. 

The garbage collection system is designed to be non-blocking, cooperative, efficient, responsive and 

scalable. Of particular interest is the ‘cooperative’ attribute. Although there is a dedicated system thread 

for the garbage collection process, user threads actually do most of the work. If a user thread is scanning 

an index (and all index access on memory-optimized tables is considered to be scanning) and it comes 

across a stale row version, it will unlink that version from the current chain and adjust the pointers. It 

will also decrement the reference count in the row header area. In addition, when a user thread 

completes a transaction, it then adds information about the transaction to a queue of transactions to be 

processed by the garbage collection process. Finally, it picks up one or more work items from a queue 

created by the garbage collection thread, and frees the memory used by the rows making up the work 

item. 

The garbage collection thread goes through queue of completed transactions about once a minute, but 

the system can adjust the frequency internally based on the number of completed transactions waiting 

to be processed.  From each transaction, it determines which rows are stale, and builds work items 

made up of a set of rows that are ready for removal..  These work items are distributed across multiple 

queues, one for each CPU used by SQL Server.  Normally, the work of actually removing the rows from 

memory is left to the user threads which process these work items from the queues, but if there is little 

user activity, the garbage collection thread itself can remove rows to reclaim system memory. 

The DVM sys.dm_db_xtp_index_stats has a row for each index on each memory-optimized table, and 

the column rows_expired indicates how many rows have been detected as being stale during scans of 

that index. There is also a column called rows_expired_removed that indicates how many rows have 

been unlinked from that index. As mentioned above, once rows have been unlinked from all indexes on 

a table, it can be removed by the garbage collection thread. So you will not see the 

rows_expired_removed value going up until the rows_expired counters have been incremented for every 

index on a memory-optimized table. 

The following query allows you to observe these values. It joins the sys.dm_db_xtp_index_stats DMV 

with the sys.indexes catalog view to be able to return the name of the index.  

SELECT name AS 'index_name', s.index_id, scans_started, rows_returned,  
       rows_expired, rows_expired_removed  
FROM sys.dm_db_xtp_index_stats s JOIN sys.indexes i  
     ON s.object_id=i.object_id and s.index_id=i.index_id 
WHERE object_id('<memory-optimized table name>') = s.object_id; 
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GO 

 

Depending on your volume of data changes and the rate and which new versions are generated, SQL 

Server can be using a substantial amount of memory for old row versions and you’ll need to make sure 

that your system has enough memory available.  Details about memory management will be covered in 

a later section.  

 

Transaction Processing  
As mentioned above, all access of data in memory-optimized tables is done using completely optimistic 

concurrency control, but multiple transaction isolation levels are still allowed. However, what isolation 

levels are allowed in what situations might seem a little confusing and non-intuitive. The isolation levels 

we are concerned about are the ones involving a cross-container transaction, which means any 

interpreted query that references memory-optimized tables whether executed from an explicit or 

implicit transaction or in auto-commit mode. The isolation levels that can be used with your memory-

optimized tables in a cross-container transaction depend on what isolation level the transaction has 

defined for the SQL Server transaction. Most of the restrictions have to do with the fact that operations 

on disk-based tables and operations on memory-optimized tables each have their own transaction 

sequence number, even if they are accessed in the same Transact-SQL transaction. You can think of this 

behavior as having two sub-transactions within the larger transaction: one sub-transaction is for the 

disk-based tables and one is for the memory-optimized tables.  

A DMV that can be useful for monitoring transactions in progress is sys.dm_db_xtp_transactions. You 

can think of this view as allowing you to peek into the global transaction table that mentioned earlier. 

We’ll be looking at this view in more detail later in this chapter, but we can take a quick look at it now. I 

started two simple transactions doing inserts into a memory-optimized table, and then ran the following 

query: 

SELECT xtp_transaction_id, transaction_id, session_id,  
       begin_tsn, end_tsn, state_desc    
FROM sys.dm_db_xtp_transactions; 
WHERE transaction_id > 0; 
GO 

  

My output shows two transactions: 

 

 

 

The xtp_transaction_id in the first column is the In-Memory OLTP Transaction-ID, and you can see that 

my two transactions have consecutive values. These are very different values than the transaction_id in 

the second column, which is the id for the ‘regular’ transaction, that the In-memory OLTP transaction is 

a part of. The xtp_transaction_id is the value used as the end-timestamp for records this transaction 
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deletes and the begin-timestamp for rows this transaction inserts, before this transaction commits and 

gets timestamp of its own. We can also see that both of these transactions have the same value for 

begin_tsn, which is the current timestamp (for the last committed transaction) at the time this 

transaction started.  There is no value for the end-timestamp because these transactions are still in 

progress.  

When a transaction is submitted to the In-Memory OLTP engine for processing, it goes through the 

following steps: 

1. Query processing  

When the first statement accessing a memory-optimized table is executed, or when a natively 

compiled module starts execution, SQL Server obtains a transaction-id for the Transact-SQL part 

of the transaction and a transaction-ID for the In-Memory OLTP portion. If any query tries to 

update a row that has already been updated by an active transaction, an ‘update conflict’ error 

is generated. Most other isolation level errors are not caught until the validation phase.  

Depending on the isolation level, the In-Memory OLTP engine keeps track of a read-set and 

write-set, which are sets of pointers to the rows that have been read or written, respectively. 

Also depending on the isolation level, it will keep track of a scan-set, which is information about 

the predicate used to access a set of records.  If the transaction commits, an end-timestamp is 

obtained, but the transaction is not really committed until after the validation phase. 

 

2. Validation 

The validation phase verifies that the consistency properties for the requested isolation level 

have been met.  We’ll see more details about validation in a later section, after I have talked 

about isolation levels. After the isolation levels behavior is validated, In-Memory OLTP may need 

to wait for any commit dependencies, which will also be described shortly.  If the transaction 

passes the validation phase, after any commit dependencies are gone it is considered really 

committed. If the any of the modified tables were created with SCHEMA_AND_DATA, the 

changes will be logged. In-Memory OLTP will read the write-set for the transaction to determine 

what operations will be logged.  There may be waiting for commit dependencies, which are 

usually very brief, and there may be waiting for the write to the transaction log. Because logging 

for memory-optimized tables is much more efficient that logging for disk-based tables (as we’ll 

see in in the section on Logging) these waits can also be very short.   

 

3. Post-processing 

The post-processing phase is usually the shortest. If the transaction committed, the begin-

timestamp in all the inserted records is replaced by the actual timestamp of this transaction and 

the end-timestamp of all the deleted records is replaced by the actual timestamp. If the 

transaction failed or was explicitly rolled back, inserted rows will be marked as garbage and 

deleted rows will have their end-timestamp changed back to infinity. 

Isolation Levels 
First, let me give you a little background on isolation levels in general.  This will not be a complete 

discussion of isolation levels, which is beyond the scope of this book. Isolation levels can be defined in 

terms of the consistency properties that are guaranteed for your transactions. The most important 

properties are the following:  
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1. Read Stability. If a transaction T reads some version V1 of a record during its processing, to 

achieve Read Stability we must guarantee that V1 is still the version visible to T as of the end of 

the transaction; that is, V1 has not been replaced by another committed version V2. Read 

Stability  be enforced either by acquiring a shared lock on V1 to prevent changes or by validating 

that V1 has not been updated before the transaction is committed.   

2. Phantom Avoidance. To achieve Phantom Avoidance we must be able to guarantee that a 

transaction T’s scans would not return additional new versions added between the time T starts 

and the time T commits. Phantom Avoidance can be enforced in two ways: by locking the 

scanned part of an index/table or by rescanning before the transaction is committed to check 

for new versions.   

 

Once we understand these properties, we can define the transaction isolation levels based on these 

properties. The first one listed (SNAPSHOT) does not mention these properties, but the second two do. 

 SNAPSHOT 

SHAPSHOT isolation level specifies that data read by any statement in a transaction will be the 

transactionally consistent version of the data that existed at the start of the transaction. The 

transaction can only recognize data modifications that were committed before the start of the 

transaction. Data modifications made by other transactions after the start of the current 

transaction are not visible to statements executing in the current transaction. The statements in 

a transaction get a snapshot of the committed data as it existed at the start of the transaction. 

In other words, a transaction running in SNAPSHOT isolation will always see the most recent 

committed data as of the start of the transaction. 

 REPEATABLE READ 

REPEATABLE READ isolation level includes the guarantees given by SNAPSHOT isolation level. In 

addition, REPEATABLE READ guarantees Read Stability. For any row that is read by the 

transaction, at the time the transaction commits the row has not been changed by any other 

transaction. Every read operation in the transaction is repeatable up to the end of the 

transaction. 

 SERIALIZABLE 

SERIALIAZABLE isolation level includes the guarantees given by the REPEATABLE READ isolation 

level. In addition, SERIALIZABLE guarantees Phantom Avoidance. The operations in the 

transaction have not missed any rows. No phantom rows have appeared between time of the 

snapshot and the end of the transaction. Phantom rows match the filter condition of a 

SELECT/UPDATE/DELETE. A transaction is serializable if we can guarantee that it would see 

exactly the same data if all its reads were repeated at the end of the transaction. 

The simplest and most widely used MVCC (multi version concurrency control) method is SNAPSHOT 

isolation  but SNAPSHOT isolation does not guarantee serializability because reads and writes logically 

occur at different times, reads at the beginning of the transaction and writes at the end.   
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Access to disk-based tables also supports READ COMMITTED isolation, which simply guarantees that the 

transaction will not read any dirty (uncommitted) data. Access to memory-optimized tables needs to use 

one of the three isolation levels mentioned above.  Table  1 lists which isolation levels can be used 

together in a cross-container transaction. You should also consider that once you have accessed a table 

in a cross-container transaction using an isolation level HINT, you should continue to use that same hint 

for all subsequent access of the table. Using different isolation levels for the same table (whether a disk-

based table or memory-optimized table) will usually lead to failure of the transaction. 

Disk-based tables  Memory-optimized tables  Recommendations 

READ COMMITTED SNAPSHOT This is the baseline combination and 
should be used for most situations 
using READ COMMITTED for disk-based 
tables.  

READ COMMITTED REPEATABLE READ / 
SERIALIZABLE 

This combination can be used during 
data migration and for memory-
optimized table access in interop mode 
(not in a natively compiled procedure).  

REPEATABLE READ / 
SERIALIZABLE 

SNAPSHOT The access for memory-optimized 
tables is only INSERT operations. This 
combination can also be useful during 
migration and if no concurrent write 
operations are being performed on the 
memory-optimized tables.  

SNAPSHOT - No memory-optimized table access 
allowed (see note 1) 

REPEATABLE READ / 
SERIALIZABLE 

REPEATABLE READ / 
SERIALIZABLE 

This combination is not allowed (see 
note 2) 

Table 1: Compatible isolation levels in cross-container transactions 

 

Note: For SHAPSHOT Isolation, all operations need to see the versions of the data that 

existed as of the beginning of the transaction. For SNAPSHOT transactions, the 

beginning of the transaction is considered to be when the first table is accessed.  In a 

cross-container transaction, however, since the sub-transactions can each start at a 

different time, another transaction may have changed data between the start times of 

the two sub-transactions. The cross-container transaction then will have no one point in 

time that the snapshot is based on.  

 

Note 2: The reason both the sub-transactions (the one on the disk-based tables and the 

one on the memory-optimized tables) can’t use REPEATABLE READ or SERIALZABLE is 

because the two systems implement the isolation levels in different ways. Imagine you 

are running the two cross-container transactions in Table 2. RHk# indicates a row in a 

memory-optimized table, and RSql# indicates a row in a disk-based table. Tx1 would 

read the row from the memory-optimized table first and no locks would be held, so that 

Tx2 could complete and change the two rows.  When Tx1 resumed, when it read the 
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row from the disk-based table, it would now have a set of values for the two rows that 

could never have existed if the transaction were run in isolation (i.e. if the transaction 

were truly serializable.)  So this combination is not allowed.  

 

Time Tx1 (SERIALIZBLE) Tx2 (any isolation level) 

1 BEGIN SQL/In-Memory sub-transactions  

2 Read RHk1  

3  BEGIN SQL/In-Memory sub-transactions 

4  Read RSql1 and update to RSql2 

5  Read RHk1 and update to RHk2 

6  COMMIT 

7 Read RSql2  

Table 2 Two concurrent cross-container transactions  

 

For more details on Isolation Levels, please see the following references: 

 http://en.wikipedia.org/wiki/Isolation_(database_systems)  

 http://research.microsoft.com/apps/pubs/default.aspx?id=69541  

Since SNAPSHOT isolation is probably the most used isolation level with memory-optimized tables, and 

is the recommended isolation level in most cases, a new database property is available to automatically 

upgrade the isolation to SHAPSHOT for all operations on memory-optimized tables, if the T-SQL 

transaction is running in a lower isolation level.  Lower levels are READ COMMITTED, which is SQL 

Server’s default, and READ UNCOMMITTED, which is not recommended. The code below shows how you 

can set this property for the ContosoOLTP database.   

ALTER DATABASE ContosoOLTP 
SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT ON; 

 

You can verify whether this option has been set in two ways, as shown below, either by inspecting the 

sys.databases catalog view or by querying the DATABASEPROPERTYEX function. 

SELECT is_memory_optimized_elevate_to_snapshot_on FROM sys.databases 
WHERE name = 'ContosoOLTP'; 
SELECT DATABASEPROPERTYEX('ContosoOLTP',  
          'IsMemoryOptimizedElevateToSnapshotEnabled'); 

  

Keep in mind that when this option is set to OFF, almost all of your queries accessing memory-optimized 

tables will need to use hints to specify the transaction isolation level.  

Validation and Post-processing  
Prior to the final commit of transactions involving memory-optimized tables, SQL Server performs a 

validation step. Because no locks are acquired during data modifications, it is possible that the data 

http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://research.microsoft.com/apps/pubs/default.aspx?id=69541
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changes could result in invalid data based on the requested isolation level.  So this phase of the commit 

processing makes sure that there is no invalid data.  

To help ensure the validation process can be performed efficiently, SQL Server may use the read-set and 

scan-set, mentioned earlier in this section, to help verify that no inappropriate changes were made. 

Whether or not a read-set or scan-set must be maintained depends on the transactions’ isolation level, 

as shown in Table 3 

Isolation Level  Read-set Scan-set 

SNAPSHOT NO NO 

REPEATABLE READ YES NO 

SERIALIZABLE YES YES 
Table 3: Changes monitored in the allowed isolation levels 

In addition, the read-set and write-set might also be needed if any of the tables modified in the 

transaction have defined constraints that must be validated.  

If memory-optimized tables are accessed in SNAPSHOT isolation, the following validation error is 

possible when a COMMIT is attempted: 

 If the current transaction inserted a row with the same primary key value as a row that was 

inserted by another transaction that committed before the current transaction, the following 

error will be generated and the transaction will be aborted.  

Error 41325: The current transaction failed to commit due to a serializable validation fa
ilure 

 

If memory-optimized tables are accessed in REPEATABLE READ isolation, the following additional 

validation error is possible when a COMMIT is attempted: 

 If the current transaction has read any row that was then updated by another transaction that 

committed before the current transaction, the following error will be generated and the transaction 

will be aborted. 

Error 41305: The current transaction failed to commit due to a repeatable read  
validation failure. 

 

The transaction’s read-set is used to determine if any of the rows read previously have a new version by 

the end of the transaction.  

Table 4 shows an example of a repeatable read isolation failure.  

Time Transaction Tx1 
(REPEATABLE READ) 

Transaction Tx2 
(any isolation level) 

1 BEGIN TRAN  

2 SELECT City FROM Person 
WHERE Name = ‘Jill’ 

BEGIN TRAN 
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3  UPDATE Person 
SET City = ‘Madrid’  
WHERE Name = ‘Jill’ 

4 --- other operations  

5  COMMIT TRAN 

6 COMMIT TRAN 
During validation, error 41305 
is generated  and Tx1 is rolled 
back 

 

Table 4: Transactions resulting in a REPEATABLE READ isolation failure 

 

If memory-optimized tables are accessed in SERIALIZABLE isolation, the following additional validation 

errors are possible when a COMMIT is attempted: 

 If the current transaction fails to read a valid row that meets the specified filter conditions (due to 

deletions by other transactions), or encounters phantoms rows inserted by other transactions that 

meet the specified filter conditions, the commit will fail. The transaction needs to be executed as if 

there are no concurrent transactions. All actions logically happen at a single serialization point. If 

any of these guarantees are violated, error 41325 (shown above) is generated and the 

transaction will be aborted.  

The transaction’s Scan-set is used to determine if any additional rows now meet the predicate’s 

condition.  

Table 5 shows an example of a serializable isolation failure.  

Time Transaction Tx1 
(SERIALIZABLE) 

Transaction Tx2 
(any isolation level) 

1 BEGIN TRAN  

2 SELECT Name FROM Person 
WHERE City = ‘Perth’ 

BEGIN TRAN 

3  INSERT INTO Person VALUES (‘Charlie’, ‘Perth’) 

4 --- other operations  

5  COMMIT TRAN 

6 COMMIT TRAN 
During validation, error 41325 
is generated  and Tx1 is rolled 
back 

 

Table 5:Transactions resulting in a SERIALIZABLE isolation failure 

 

Another isolation level violation that can occur is a write-write conflict. However, as mentioned earlier, 

this error is caught during regular processing and not during the validation phase.  

Error 41302: The current transaction attempted to update a record in table X that has  
been updated since this transaction started.  The transaction was aborted. 
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Commit Dependencies 

During regular processing, a transaction can read rows written by other transactions that are in the 

validation or post-processing phases, but have not yet committed. The rows are visible because the 

logical end time of those other transactions has been assigned at the start of the validation phase. (If the 

other transactions are not entered their validation phase yet, they are not committed and a concurrent 

transaction will never be able to see them.) 

If a transaction Tx1 reads such uncommitted rows from Tx2, Tx1 will take a commit dependency on Tx2 

and increment an internal counter that keeps track of the number of commit dependencies that Tx1 has. 

In addition, Tx2 will add a pointer to Tx1 to a list of dependent transactions that Tx2 maintains.  

Waiting for commit dependencies to clear has two main implications: 

 A transaction cannot commit until the transactions it depends on have committed. In other words, 

it cannot enter the commit phase, until all dependencies have cleared and the internal counter 

has been decremented to 0. 

 In addition, result sets are not returned to the client until all dependencies have cleared. This 

prevents the client from retrieving uncommitted data. 

If any of the dependent transactions fails to commit, there is a commit dependency failure. This means 

the transaction will fail to commit with the following error: 

Error 41301: A previous transaction that the current transaction took a dependency on 

has aborted, and the current transaction can no longer commit. 

Once all the commit dependencies have cleared, the transaction is logged. Logging will be covered in 

more detail in a later section.  After the logging is completed, the transaction is marked as committed in 

the global transaction table.  

The final step in the validation process is to go through the linked list of dependent transactions and 

reduce their dependency counters by 1. Once this validation phase is finished, the only reason that this 

transaction might fail is due to a log write failure. 

 

Post-processing  

The final phase is the post-processing, which is sometimes referred to as ‘commit processing’.  The main 

operations are to update the timestamps of each of the rows inserted or deleted by this transaction.  

 For a DELETE operation, set the row’s end timestamp to the end timestamp of the transaction 

and clear the type flag on the row’s end timestamp field to indicate the end-timestamp is really a 

timestamp, and not a transaction-ID .  

 For an INSERT operation, set the row’s begin timestamp to the end timestamp of the transaction 

and clear the type flag on the row’s begin timestamp field.  

 

The actual unlinking and deletion of old row versions is handled by the garbage collection system, which 

was discussed earlier.  
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To summarize, let’s take a look at the steps taken when processing a transaction Tx1 involving one or 

more memory-optimized tables, after the all of the Transact-SQL is executed and the COMMIT TRAN 

statement is encountered: 

1.  Validate the changes made by Tx1 

2. Wait for any commit dependencies to reduce the dependency count to 0.  

3. Log the changes. 

4. Mark the transaction as committed in the global transaction table. 

5. Clear dependencies of transactions that are dependent on Tx1. 

6. Update the begin-timestamp of inserted rows and the end-timestamp of deleted rows 

(post-processing). 

The final step of removing any unneeded or inaccessible rows is not always done immediately and may 

be handled by completely separate threads performing garbage collection. 

Concurrency 
As mentioned earlier, when accessing memory-optimized tables, SQL Server uses completely optimistic 

multi-version concurrency control. This does not mean there is never any waiting when working with 

memory-optimized tables in a multi-user system, but there is never any waiting for locks. The waiting 

that does occur is usually of very short duration, such as when SQL Server is waiting for dependencies to 

be resolved during validation, and also when waiting for  log writes to complete.  

There is some similarity between disk-based tables and memory-optimized tables when performing 

concurrent data operations. Both do conflict detection when attempting to update to make sure that 

updates are not lost. But processing modifications to disk-based tables  is pessimistic in the sense that if 

transaction Tx2 attempts to update data that transaction Tx1 has already updated, the system will 

considers that transaction Tx1 may possibly fail to commit. Tx2 will then wait for Tx1 to complete, and 

will generate a conflict error only if Tx1 was successfully committed.  If Tx1 is rolled back, Tx2 can 

proceed with  no conflict. Because there is an underlying assumption that Tx1 could fail, this is a 

pessimistic approach.  When operating on memory-optimized tables, the assumption is that  Tx1 will 

commit. So the In-Memory OLTP engine will generate the conflict error immediately, without waiting to 

find out if Tx1 does indeed commit. 

In general, you can think of the general strategy in processing operations on memory-optimized tables is 

that a transaction Tx1 cannot cause other transaction Tx2 to wait, just because Tx2 wants something, 

such as chaging a row’s values, guaranteeing serializability, etc. It is the Tx1 that wants to perform the 

operation, or wants to guarantee a certain isolation level, that covers the cost. This could take the form 

of getting an update conflict error or waiting for validation to take place which might result in a 

validation failure. 

Locks 

Operations disk-based tables follow the request transaction isolation level semantics by using locks to 

make sure data is not changed by transaction Tx2 while transaction Tx1 needs the data to remain 

unchanged.  In a traditional relational database system in which pages need to be read from disk before 

they can be processed, the cost of acquiring and managing locks can just be a fraction of the total wait 

time.  Waiting for disk reads, and managing the pages in the buffer pool can be at least as much 

overhead. But with memory-optimized tables, where there is no cost for reading pages from disk, 
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overhead for lock waits could be a major concern. SQL Server In-Memory OLTP was designed from the 

beginning to be a totally lock-free system.  Existing rows are never modified, so there is no need to lock 

them. As we’ve seen, all updates are performed as a two-step process using row versions.  The current 

version of the row is marked as deleted and a new version of the row is created.   

Latches  

Latches are lightweight synchronization primitives that are used by the SQL Server engine to guarantee 

consistency of data structures used to manage disk-based tables, including; index and data pages as well 

as internal structures such as non-leaf pages in a B-Tree.  Even though latches are quite a bit lighter 

weight than locks, there can still be substantial overhead and wait time involved in using latches. A latch 

must be acquired every time a page is read from disk, to make sure no other process writes the page 

while it is being read. A latch is acquired on the memory buffer that a page from disk is being read into, 

to make sure no other process uses that buffer.  In addition, SQL Server acquires latches on internal 

metadata, such as the internal table that keeps track of locks being acquired and released. Since SQL 

Server In-Memory OLTP doesn’t do any reading from disk during data processing, doesn’t store data in 

buffers and doesn’t apply any locks, there is no reason that latches are required for operations on 

memory-optimized tables and one more possible source of waiting and contention is removed.  

The mechanics and internals of locks and latches is a huge topic, and is really not in the scope of this 

book.  However, it might be useful just to see a quick summary of the difference between locks and 

latches, and this is shown in Table 6.  

 

Structure  Purpose  Controlled by  Performance cost  

Latch  Guarantee 

consistency of 

in-memory 

structures.  

SQL Server engine 

only.  

Performance cost is low. To allow 

for maximum concurrency and 

provide maximum performance, 

latches are held only for the 

duration of the physical operation 

on the in-memory structure, unlike 

locks which are held for the 

duration of the logical transaction.  

Lock  Guarantee 

consistency of 

transactions, 

based on 

transaction 

isolation level.  

Can be controlled 

by user.  

Performance cost is high relative 

to latches as locks must be held for 

the duration of the transaction.  

Table 6: Comparing locks and latches  
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Checkpoint and Recovery 
 

SQL Server must ensure transaction durability for memory-optimized tables, so that changes can be 

recovered after a failure. In-Memory OLTP achieves this by having both the checkpoint process and the 

transaction logging process write to durable storage. Though not covered in this paper, In-Memory OLTP 

is also integrated with the AlwaysOn Availability Group feature that maintains highly available replicas 

supporting failover.  

The information written to disk consists of checkpoint streams and transaction log streams.  

 Log streams contain the changes made by committed transactions logged as insertion and 

deletion of row versions.   

 Checkpoint streams come in three varieties: 

o data streams contain all versions inserted during between two specific timestamp 

values.  

o delta streams are associated with a particular data stream and contain a list of integers 

indicating which row versions in its corresponding  data stream have been deleted. 

o large data streams contain data from the columnstore index compressed rowgroups for  

in memory-optimized tables.  

 

The combined contents of the transaction log and the checkpoint streams are sufficient to recover the 

in-memory state of memory-optimized tables to a transactionally consistent point in time. Before we go 

into more detail of how the log and the checkpoint files are generated and used, here are a few crucial 

points to keep in mind: 

 Log streams are stored in the regular SQL Server transaction log.  

 Checkpoint streams are stored in SQL Server filestream files which in essence are sequential files 

fully managed by SQL Server.  (Filestream storage was introduced in SQL Server 2008 and In-

Memory OLTP checkpoint files take advantage of that technology. For more details about 

filestream storage and management, see this whitepaper: http://msdn.microsoft.com/en-

us/library/hh461480.aspx  ). One big change in SQL 2016 is that it uses FileStream filegroup only 

as a container. File creation and garbage collection is now fully managed by in-memory OLTP 

engine.  

 The transaction log contains enough information about committed transactions to redo the 

transaction. The changes are recorded as inserts and deletes of row versions marked with the 

table they belong to. The transaction log stream for the changes to memory-optimized tables is 

generated at the transaction commit time. This is different than disk-based tables where each 

change is logged at the time of operation irrespective of the final outcome of the transaction. 

No undo information is written to the transaction log.  

 Index operations on memory-optimized tables are not logged. With the exception of 

compressed segments for columnstore indexes on memory-optimized tables, all indexes are 

completely rebuilt on recovery. 

http://msdn.microsoft.com/en-us/library/hh461480.aspx
http://msdn.microsoft.com/en-us/library/hh461480.aspx
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Transaction Logging 
In-Memory OLTP’s transaction logging is designed for both scalability and high performance. Each 

transaction is logged in a minimal number of potentially large log records that are written to SQL 

Server’s regular transaction log. The log records contain information about all versions inserted and 

deleted by the transaction. Using this information, the transaction can be redone during recovery.   

For In-Memory OLTP transactions, log records are generated only at commit time.  In-Memory OLTP 

does not use a write-ahead logging (WAL) protocol, such as used when processing operations on disk-

based tables.  With WAL, SQL Server writes to the log before writing any changed data to disk, and this 

can happen even for uncommitted data written out during checkpoint.  For In-Memory OLTP, dirty data 

is never written to disk. Furthermore, In-Memory OLTP groups multiple log records into one log record 

to minimize the overhead both for the overall size of the log and reducing the number of writes to log 

buffer..  Not using WAL is one of the factors that allows In-Memory OLTP commit processing to be 

extremely efficient.  

The following simple script illustrates the greatly reduced logging for memory-optimized tables.  This 

script creates a database that can hold memory-optimized tables, and then creates two similar tables. 

One is a memory-optimized table, and one is a disk-based table.  

USE master 
GO 
IF EXISTS (SELECT * FROM sys.databases WHERE name='LoggingDemo') 
  DROP DATABASE LoggingDemo; 
GO 
CREATE DATABASE LoggingDemo ON   
 PRIMARY (NAME = [LoggingDemo_data], FILENAME = 'C:\HKdata\LoggingDemo_data.mdf'),  
 FILEGROUP [LoggingDemo_FG] CONTAINS MEMORY_OPTIMIZED_DATA 
 (NAME = [LoggingDemo_container1],  FILENAME = 'C:\HKdata\StorageDemo_mod_container1') 
 LOG ON (name = [hktest_log], Filename='C:\HKdata\StorageDemo.ldf', size=100MB); 
GO 
USE LoggingDemo 
GO 
IF EXISTS (SELECT * FROM sys.objects WHERE name='t1_inmem') 
  DROP TABLE [dbo].[t1_inmem] 
GO 
-- create a simple memory-optimized table 
CREATE TABLE [dbo].[t1_inmem] 
( [c1] int NOT NULL,  
  [c2] char(100) NOT NULL,   
  CONSTRAINT [pk_index91] PRIMARY KEY NONCLUSTERED HASH ([c1]) WITH(BUCKET_COUNT = 100000
0) 
) WITH (MEMORY_OPTIMIZED = ON,  
 DURABILITY = SCHEMA_AND_DATA); 
GO 
IF EXISTS (SELECT * FROM sys.objects WHERE name='t1_disk') 
  DROP TABLE [dbo].[t1_disk] 
GO 
-- create a similar disk-based table 
CREATE TABLE [dbo].[t1_disk] 
( [c1] int NOT NULL,  
  [c2] char(100) NOT NULL) 
GO 
CREATE UNIQUE NONCLUSTERED INDEX t1_disk_index on t1_disk(c1); 
GO 
 

 

Next, populate the disk-based table with 100 rows, and examine the contents of the transaction log 

using the undocumented (and unsupported) function fn_dblog(). 

 
BEGIN TRAN 
DECLARE @i int = 0 
WHILE (@i < 100) 
BEGIN 
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 INSERT INTO t1_disk VALUES (@i, replicate ('1', 100)) 
 SET @i = @i + 1 
END 
COMMIT 
 
-- you will see that SQL Server logged 200 log records 
SELECT * FROM sys.fn_dblog(NULL, NULL)  
WHERE PartitionId IN 
     (SELECT partition_id FROM sys.partitions  
      WHERE object_id=object_id('t1_disk')) 
ORDER BY [Current LSN] ASC; 
GO 

 

Now run a similar update on the memory-optimized table  

BEGIN TRAN 
DECLARE @i int = 0 
WHILE (@i < 100) 
BEGIN 
 INSERT INTO t1_inmem VALUES (@i, replicate ('1', 100)) 
 SET @i = @i + 1 
END 
COMMIT 

 

We can’t filter based on the partition_id, as a single log record access rows from multiple tables or 

partitions, so we just look at the most recent log records.  We should see the three most recent records 

looking similar Figure 19.  

 

-- look at the log 
SELECT * FROM sys.fn_dblog(NULL, NULL) order by [Current LSN] DESC; 
GO 

  

 

Figure 19 SQL Server transaction log showing one log record for 100 row transaction 

All 100 inserts have been logged in a single log record, of type LOP_HK.  LOP indicates a ‘logical 

operation’ and HK is an artifact from the project codename, Hekaton.  Another undocumented, 

unsupported function can be used to break apart a LOP_HK record. You’ll need to replace the LSN value 

with the LSN that the results show for your LOP_HK record.  

SELECT [current lsn], [transaction id], operation,  
       operation_desc, tx_end_timestamp, total_size,  
       object_name(table_id) AS TableName 
FROM sys.fn_dblog_xtp(null, null) 
WHERE [Current LSN] = '00000020:00000157:0005'; 

 

The first few rows and columns of output should look like Figure 20. 
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Figure 20 Breaking apart the log record for the inserts on the memory-optimized table shows the individual rows affected 

The single log record for the entire transaction on the memory-optimized table, plus the reduced size of 

the logged information, helps to make transactions on memory-optimized tables much more efficient.  

Checkpoint 
Just like for operations on disk-based tables, the main reasons for checkpoint operations are to reduce 

recovery time and to keep the active portion of the transaction log as small as possible . The 

checkpointing process for memory-optimized tables allows the data from DURABLE tables to be written 

to disk so it can be available for recovery. The data on disk is never read during query processing, it is 

ONLY on disk to be used when restarting your SQL Server.  The checkpointing process is designed to 

satisfy two important requirements.  

 Continuous checkpointing. Checkpoint related I/O operations occur incrementally and 

continuously as transactional activity accumulates. Hyper-active checkpoint schemes (defined as 

checkpoint processes which sleep for a while after which they wake up and work as hard as 

possible to finish up the accumulated work) can potentially be disruptive to overall system 

performance.  

 Streaming I/O. Checkpointing for memory-optimized tables relies on streaming I/O rather than 

random I/O for most of its operations. Even on SSD devices random I/O is slower than sequential 

I/O and can incur more CPU overhead due to smaller individual I/O requests. In addition, SQL 

Server 2016 now can read the log in parallel using multiple serializers, which will be discussed in 

the section below on the Checkpoint Process.  

 

A checkpoint event for memory-optimized tables is invoked in these situations:  

 Manual checkpoint – an explicit checkpoint command initiates checkpoint operations on both 

disk-based tables and memory-optimized tables.  

 Automatic checkpoint – SQL Server runs the in-memory OLTP checkpoint when the size of the 

log has grown by about 1.5 GB since the last checkpoint. (This is increased from 512 MBin SQL 

Server 2014.) Note that this is not dependent on the amount of work done on memory-optimized 

tables, only the size of the transaction log, which contains all log records for changes to durable 

memory-optimized tables and to disk-based tables. It's possible that there have been no 

transactions on memory-optimized tables when a checkpoint event occurs.   

 

Because the checkpoint process is continuous, the checkpoint event for memory-optimized tables does 

not have the job have writing all the all the changed data to disk, as happens when a checkpoint is 

initiated for disk-based tables.  The main job of the checkpoint event on memory-optimized tables is to 

create a new root file and manage the states of certain other files, as are described in the next section. 
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Checkpoint Files 

Checkpoint data is stored in four types of checkpoint files. The main types are DATA files and DELTA 

files. There are also LARGE OBJECT files and ROOT files.  Files that are precreated and unused, so they 

aren’t storing any checkpoint data, have a type of FREE before they are used as one of the four types 

listed.  

A data file contains only inserted versions of rows, which, as we saw earlier are generated by both 

INSERT and UPDATE operations. Each file covers a specific timestamp range. All versions with a begin 

timestamp within the data file’s range are contained in the file. Data files are append-only while they 

are open and once they are closed, they are strictly read-only. At recovery time the active versions in 

the data files are reloaded into memory.  The indexes are then rebuilt as the rows are being inserted 

during the recovery process.      

A delta file stores information about which versions contained in a data file have been subsequently 

deleted. There is a 1:1 correspondence between delta files and data files. Delta files are append-only for 

the lifetime of the data file they correspond to. At recovery time, the delta file is used as a filter to avoid 

reloading deleted versions into memory. Because each data file is paired with exactly one delta file, the 

smallest unit of work for recovery is a data/delta file pair.  This allows the recovery process to be highly 

parallelizable.   

A large data file stores the contents of one rowgroup for a columnstore index. If you have no 

columnstore indexes, there will be several PRECREATED large data files, but they will never become 

ACTIVE.   

A root file keeps track of the files generated for each checkpoint event, and a new ACTIVE root file is 

created each time a checkpoint event occurs. 

As mentioned, the data and delta files are the main types, because they contain the information about 

all the transactional activity against memory-optimized tables. Because the data and delta files always 

exist in a 1:1 relationship (once they actually contain data), a data file and its corresponding delta file are 

sometimes referred to as a checkpoint file pair or CFP.  

For SQL Server 2016, CTP3, the checkpoint files can be in one of the following states:   

 PRECREATED: A small set of files are kept pre-allocated to minimize wait time when new files 

are needed. These files are created when the first memory-optimized table is created. Some of 

these files will have a size of 128MB and some will be 8MB so they can be easily converted to 

DATA and DELTA files when needed, which start at 12*MB and 8MB respectively. If the machine 

has less than 16GB of memory, the files will be 1/8 of the size mentioned, data files will need to 

be 16MB, delta files will be 1MB. If a PRECREATED file is used for a root file or LARGE DATA 

file, its size will be reduced to 2MB or  4MB. As mentioned above, the precreated files will of 

course contain no data and their type is FREE. Twelve files will be PRECREATED when the first 

memory-optimized table is created. So this gives us a fixed minimum storage requirement in 

databases with memory-optimized tables. SQL Server will convert PRECREATED files to 

ACTIVE or MERGE TARGET as those files are needed. SQL Server will create new 

PRECREATED files when a CHECKPOINT operation occurs, if there are not 3-5 existing 

PRECREATED files. 
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 ACTIVE: These files are being actively filled by inserted and deleted rows. Some of the files in 

this state contain the rows that will need to be recovered after a system crash, before applying 

the active part of the transaction log. Some of these files contain the rows that will be recovered 

by applying the changes from the transaction log. (For SQL Server 2014, these files had the state 

‘UNDER CONSTRUCTION’.) 

 MERGE TARGET: These files are in the process of being constructed by merging ACTIVE files 

that have adjacent transaction ranges. Since these files are in the process of being constructed 

and they duplicate information in the ACTIVE files, they will not be used for crash recovery  Once 

the merge operation is complete, the MERGE TARGET files will become ACTIVE  

 WAITING FOR LOG TRUNCATION: Once a merge operation is complete, the old ACTIVE files, 

which were the source of the MERGE operation, will transition to WAITING FOR LOG 

TRUNCATION. CFPs in this state are needed for the operational correctness of a database with 

memory-optimized tables.  For example, these files would be needed to recover from a durable 

checkpoint to restore to a previous point in time during a restore.  A CFP can be marked for 

garbage collection once the log truncation point moves beyond its transaction range. 

As described, files can transition from one state to another, but only a limited number of transitions are 

possible. Figure 21 shows the possible transitions.  

 

 

Figure 21 Possible state transitions for checkpoint files in SQL Server 2016  

The main transitions are the following: 

 PRECREATED to ACTIVE – A PRECREATED file is converted to ACTIVE when a new file is 

needed to contain transactions for a given transaction range. If it is a root file, it 

corresponds to the latest checkpoint operation and will be used for crash recovery. 

 PRECREATED to MERGE TARGET  A PRECREATED file is converted to MERGE TARGET 

when a new file is needed to contain the results of a file merge operation. 
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 MERGE TARGET to ACTIVE    When a merge operation is complete, the MERGE TARGET 

file takes over the role of merged ACTIVE  files and hence it becomes active.  

 ACTIVE to WAITING FOR LOG TRUNCATION – When a merge operation is complete, the 

ACTIVE files that are the source of the  merge operation will transition from ACTIVE to 

WAITING FOR LOG TRUNCATION as they are no longer needed for crash recovery. Root 

and large object files can be transitioned to WAITING FOR LOG TRUNCATION without 

the need for a merge operation.  

 WAITING FOR LOG TRUNCATION to Physically deleted – Once the log truncation point 

moves beyond the highest transaction ID in a data file, the file is no longer needed and 

can be recycled. If there are already 3-5 PRECREATED files of the same type, the file can 

be deleted. 

 WAITING FOR LOG TRUNCATION to PRECREATED - Once the log truncation point moves 

beyond the highest transaction ID in a data file, the file is no longer needed and can be 

recycled. If there are NOT 3-5 PRECREATED  files of the same type, the file gets moved 

to the free pool and  its state changes to PRECREATED. 

Let’s look at some code that can provide some information about the checkpoint files and their state 

transitions.  First we’ll create a new database called CFP.  

USE master; 
GO 
IF DB_ID(‘IMDB’) IS NOT NULL  
    DROP DATABASE IMDB; 
GO 
CREATE DATABASE IMDB ON  
 PRIMARY (NAME = IMDB_data, FILENAME = 'C:\IMData\IMDB_data.mdf'), 
FILEGROUP imdb_mod CONTAINS MEMORY_OPTIMIZED_DATA 
(NAME = imdb_mod,  FILENAME = 'C:\IMData\imdb_mod') 
  LOG ON (name = imdb_log, Filename='C:\IMData\imdb_log.ldf', size=100MB); 
GO 
ALTER DATABASE IMDB SET RECOVERY FULL; 
GO 

 

At this point, you might want to look in your folder containing the memory-optimized data files. In my 

example, it’s the folder called C:\IMData\imdb_mod. Note that in my database creation script, that is 

the name I gave for the file, but for memory-optimized tables, the value supplied for FILENAME is used 

for a folder name.  Within that folder is a folder called $FSLOG and one called $HKv2. Open the $HKv2 

folder, and it will be empty until you create a memory-optimized table, as you can do by running the 

code below: 

 

USE IMDB; 
GO 
-- create a memory-optimized table with each row of size > 8KB 
CREATE TABLE dbo.t_memopt ( 
       c1 int NOT NULL, 
       c2 char(40) NOT NULL, 
       c3 char(8000) NOT NULL, 
  
       CONSTRAINT [pk_t_memopt_c1] PRIMARY KEY NONCLUSTERED HASH (c1)  
        WITH (BUCKET_COUNT = 100000) 
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 
GO 
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At this point, you can look in the folder that was empty, and see that it now has 13 files in it.. My folder 

contents are shown in Figure 22.  

 

Figure 22 Files on disk after creating a table 

 

You can refer back to the description of PRECREATED files to see what type of file is indicated by each of 

the sizes, or you can run the query below accessing the DMV sys.dm_db_xtp_checkpoint_files.   

SELECT checkpoint_file_id, file_type_desc, state_desc,  
       file_size_in_bytes/1024/1024 AS size_in_MB,  
       relative_file_path 
FROM sys.dm_db_xtp_checkpoint_files 
ORDER BY file_type_desc; 
GO 

  

My results are shown in Figure 23. There are 3 larger FREE PRECREATED files and 9 smaller ones. One 

ROOT file is the only one that has the state ACTIVE.   
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Figure 23 The 13 checkpoint files after creating a memory-optimized table  

 

You might also notice that the values in the column relative_file_path are the actual path names of files 

in the C:\IMData\imdb_mod folder.  In addition, the file component of the path, once the brackets are 

removed, is the checkpoint_file_id.  

If we had created multiple containers in the filegroup containing the memory-optimized tables, there 

would be multiple folders under C:\IMData, and the checkpoint files would be spread across them. SQL 

Server 2016 uses a round-robin allocation algorithm for each type of file (DATA, DELTA, LARGE OBJECT 

and ROOT). Thus each container contains all types of files.  

Multiple containers can be used as a way to parallelize data load. Basically, if creating a second 

container reduces data load time (most likely because it is on a separate hard drive), then use it. If the 

second container does not speed up data transfer (because it is just another directory on the same hard 

drive), then don’t do it. The basic recommendation is to create one container per spindle (or I/O bus). 

 

Let’s now put some rows into the table and backup the database (so that we can make log backups 

later: 

-- INSERT 8000 rows.  
-- This should load 5 16MB data files on a machine with <= 16GB of memory. 
SET NOCOUNT ON; 
DECLARE @i int = 0 
WHILE (@i < 8000) 
BEGIN 
        INSERT t_memopt VALUES (@i, 'a', REPLICATE ('b', 8000)) 
        SET @i += 1; 
END; 
GO 
BACKUP DATABASE IMDB TO  DISK = N'C:\IMBackups\imdb-populate-table.bak' 
    WITH NOFORMAT, INIT,  NAME = N'imdb-Full Database Backup', SKIP, NOREWIND,  
       NOUNLOAD,  STATS = 10; 
GO 

  

Take a look in the folder again, and you should see 8 new files. This is because we needed four DATA 

files to hold all the 8000 rows of 8K each, and each of those DATA files has a corresponding DELTA file.  

On my system, three of those  ACTIVE DATA files were transitioned from PRECREATED files and one was 

newly created. Three new PRECREATED files were then created. 
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Now let’s look at the metadata in a little more detail.  As seen above, the DMV 

sys.dm_db_xtp_checkpoint_files, has one row for each file, along with property information for each file. 

We can use the following query to look at a few of the columns in the view. 

SELECT file_type_desc, state_desc, internal_storage_slot,file_size_in_bytes,  
       inserted_row_count, deleted_row_count,  
       lower_bound_tsn, upper_bound_tsn, 
       checkpoint_file_id, relative_file_path 
FROM sys.dm_db_xtp_checkpoint_files 
ORDER BY file_type_desc; 
GO 

 

The first few columns of the rows for the DATA and DELTA files are shown in Figure 24, and include the 

following:  

 file_type_desc  

This value is one of DATA,  DELTA, LARGE OBJECT or ROOT. 

 state_desc 

This value is one of the state values listed above. 

 internal_storage_slot 

This value is the pointer to the internal storage array described below, but is not populated until 

a file becomes ACTIVE.   

 file_size_in_bytes 

Note that we have just fixed sizes so far, the same as the PRECREATED sizes; the DATA files are 

16777216 bytes (16 MB) and the DELTA files are 1048576 bytes(1 MB). 

 logical_row_count 

This column contains either the number of inserted rows contained in the file (for DATA files) or 

the number of deleted row id contained in the file (for DELTA files). 

 lower_bound_tsn 

This is the timestamp for the earliest transaction covered by this checkpoint file. 

 upper_bound_tsn 

This is the timestamp for the last transaction covered by this checkpoint file. 

 

As will be discussed more in the next section, when a checkpoint event occurs, the ACTIVE files that 

have had rows inserted into them will be closed, and 1 or more new files will be opened (converted 

from the PRECREATED files) to store data. We can query sys.dm_db_xtp_checkpoint_stats DMV and look 

at the column last_closed_checkpoint_ts._Any ACTIVE data file with an upper_bound_tsn greater than 

this value is considered open. At this point, when I query sys.dm_db_xtp_checkpoint_stats, the 

last_closed_checkpoint_ts is 0, so all my ACTIVE files are open.  None of the files are closed because 
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there has been no checkpoint event yet, even though (because of the continuous checkpoint) there are 

7991 rows in the files.  (Six files have 1179 rows and one has 917.) So most of the 8000 rows that I just 

inserted have been written on to the checkpoint files. However, if SQL Server needed to recover this 

table’s data at this point, it would do it completely from the transaction log.  

 

Figure 24 Checkpoint files after inserted 8000 rows 

 
But now, if we actually execute the CHECKPOINT command in this database, you’ll have one or more 

closed checkpoint files. To observe this behavior, I run the following code: 

CHECKPOINT 
GO 
select sum(logical_row_count), max(upper_bound_tsn) 
FROM sys.dm_db_xtp_checkpoint_files; 
GO 
SELECT last_closed_checkpoint_ts 
FROM sys.dm_db_xtp_checkpoint_stats; 
GO 

 

After executing CHECKPOINT in this example, I see a last_closed_checkpoint_ts value of of 8003 in 

sys.dm_db_xtp_checkpoint_stats, which is also now the highest value in any of the files for 

upper_bound_tsn. I also see that there are now 8000 rows in the files, as all the inserted rows have now 

been written.  So all of the files DATA and DELTA files are now closed.  The only change to the number of 

files is that a new ROOT file was created. Subsequent CHECKPOINT commands will each create a new 

ROOT file, and new DATA and DELTA files containing 0 rows and increasing values for upper_bound_tsn. 

The metadata of all checkpoint file pairs that exist on disk is stored in an internal array structure 

referred to as the Storage Array in which. each entry refers to a CFP. As of SQL Server 2016 the number 

of entries (or slots) in the array is dynamic.  The entries in the storage array are ordered by timestamp  

and as  mentioned, each CFP contains transactions in a particular range. The CFPs referenced by the 

storage array (along with the tail of the log) represent all the on-disk information required to recover 
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the memory-optimized tables in a database.   The internal_storage_slot value in the 

sys.dm_db_xtp_checkpoint_files DMV refers to a location in the storage array.  

 

 

 

The Checkpoint Process  

The checkpoint process for memory-optimized tables is actually comprised of several threads and 

various tasks. These are described below: 

Controller thread  

This thread scans the transaction log to find ranges of transactions that can be given to sub-threads, 

called ‘serializers’. Each range of transactions is referred to as a ‘segment’. Segments are identified by a 

special segment log record which has information about the range of transactions within the segment. 

When the controller sees such a log record, the referenced segment is assigned to a serializer thread.  

  

Segment Generation 

A set of transactions is grouped into a segment when a user transaction (with transaction_id T) 

generates log records that cause the log to grow and cross the 1MB boundary from the end of the 

previous segment end point. The user transaction T will then close the segment. Any transactions with a 

transaction_id of less than T will continue to be associated with this segment and their log records will 

be part of the segment. The last transaction will write the segment log record when it completes. Newer 

transactions, with a transaction_id greater than T, will be associated with subsequent segments.  

  

 Serializer Threads  

As each segment log record, representing a unique transaction range, is encountered by the Controller 

Thread, it is assigned to a different serializer thread. The serializer thread processes all the log records in 

the segment, writing all the inserted and deleted row information to the data and delta files. 

  

Timer Task  

A special Timer Task wakes up at regular intervals to check if the active log has exceeded 1.5GB since the 

last checkpoint event. If so, an internal transaction is created which closes the current open segment in 

the system and marks it as a special segment that should close a checkpoint. Once all the transactions 

associated with the segment have completed, the segment definition log record is written. When this 

special segment is processed by the controller thread, it wakes up a ‘close thread’. 

  

Close Thread  

The Close Thread generates the actual checkpoint event by generating a new root file which contains 

information about all the files that are active at the time of the checkpoint  This operation is referred to 

a ‘closing the checkpoint’.  
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Unlike a checkpoint on disk-based tables, where we can think of a checkpoint as the single operation of 

writing all dirty data to disk, the checkpoint process for memory-optimized tables is actually a set of 

processes that work together to make sure the your data is recoverable, but that it also can be 

processed extremely efficiently.  

 

Merging Checkpoint Files 
The set of checkpoint files that SQL Server manages for an In-memory OLTP-enabled database can grow 

with each checkpoint operation. However the active content of a data file decreases as more and more 

of its versions are marked as deleted in the corresponding delta file. Since the recovery process will read 

the contents of all data and delta files, performance of crash recovery degrades as the relevant number 

of rows in each data file decreases.  

The solution to this problem is for SQL Server to merge data files that have adjacent   timestamp ranges, 

when their active content (the percentage of undeleted versions in a data file) drops below a threshold. 

Merging two data files DF1 and DF2 results in a new data file DF3 covering the combined range of DF1 

and DF2. All deleted versions identified in the delta files for DF1 and DF2 are removed during the merge. 

The delta file for DF3 is empty immediately after the merge, except for deletions that occurred after the 

merge operation started. 

Merging can also occur when two adjacent data files are each less than 50% full.  Data files can end up 

only partially full if a manual checkpoint has been run, which closes the currently open checkpoint data 

file and starts a new one. 

Automatic Merge 

To identify files to be merged, a background task periodically looks at all active data/delta file pairs and 

identifies zero more sets of files that qualify. Each set can contain two or more data/delta file pairs that 

are adjacent to each other such that the resultant set of rows can still fit in a single data file of size 

128MB. Figure 25 shows are some examples of files that will be chosen to be merged under the merge 

policy.  

 

Adjacent Source Files (%full) Merge Selection 

DF0 (30%) DF1 (50%), DF2 (50%), DF3 (90%) (DF1, DF2) 

DF0 (30%) DF1 (20%), DF2 (50%), DF3 (10%) (DF0, DF1, DF2). Files are chosen starting 

from left 

DF0 (80%), DF1 (10%), DF2 (10%), DF3(20%) (DF0, DF1, DF2). Files are chosen starting 

from left 

Figure 25 Examples of files that can be chosen for file merge operations 

 

It is possible that two adjacent data files are 60% full. They will not be merged and 40% of storage is 

unused. So effectively, the total disk storage used for durable memory-optimized tables is larger than 

the corresponding memory-optimized size. In the worst case, the size of storage space taken by durable 

tables could be two times larger than the corresponding memory-optimized size. 
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Garbage Collection of Checkpoint Files   

Once the merge operation is complete, the source files are not needed and their state changes to 

WAITING FOR LOG TRUNCATION. These files can then be removed by a garbage collection process as 

long as the log is being regularly truncated. Truncation will happen if regular log backups are taken, or, if 

the database is in auto_truncate mode. Before a checkpoint file can be removed, the In-Memory OLTP 

engine must ensure that it will not be further required. The garbage collection process is automatic, and 

does not require any intervention.  

 

 

Recovery 
Recovery of In-Memory OLTP tables, during a database or instance restart, or as part of a RESTORE 

operation, starts after the location of the most recent checkpoint file inventory has been determined by 

reading the most recent ROOT file. SQL Server recovery of disk-based tables and In-Memory OLTP 

recovery proceed in parallel.   

In-Memory OLTP recovery itself is parallelized. Each delta file represents a filter for rows that need not 

be loaded from the corresponding data file. This data/delta file pair arrangement means that data 

loading can proceed in parallel across multiple IO streams with each stream processing a single data file 

and delta file. SQL Server uses one thread per container to create a delta-map for each delta file in that 

container. Once the delta maps are created,  SQL Server streams data files across all cores, with the 

contents of each data file being filtered through the data map so that deleted rows are not reinserted. 

This means that if you have 64 cores and 4 containers, 4 threads will be used to create the delta maps 

but the data file streaming will be done by 64 cores.  

Finally, once the checkpoint file load process completes, the tail of the transaction log is read, starting 

from the timestamp of the last checkpoint, and the INSERT and DELETE operations are reapplied. As of 

SQL Server 2016, this process of reading and reapplying the logged operations is performed in parallel.  

After all the transactions are reapplied, the database will be the state that existed at the time the server 

stopped, or the time the backup was made. 

Native Compilation of Tables and and Native Modules  
In-Memory OLTP provides the ability to natively compile modules that access memory-optimized tables, 

including stored procedures, views and inline table-valued functions. In fact, In-memory OLTP  also 

natively compiles memory-optimized tables themselves. Native compilation allows faster data access 

and more efficient query execution than traditional interpreted Transact-SQL provides. 

What is native compilation? 
Native compilation refers to the process of converting programming constructs to native code, 

consisting of processor instructions that can be executed directly by the CPU, without the need for 

further compilation or interpretation.  

The Transact-SQL language consists of high-level constructs such as CREATE TABLE and SELECT … FROM. 

The In-Memory OLTP compiler takes these constructs, and compiles them down to native code for fast 

runtime data access and query execution. The In-Memory OLTP compiler takes the table and module 
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definitions as input. It generates C code, and leverages the Visual C compiler to generate the native 

code. 

The result of the compilation of tables and modules are DLLs that are loaded in memory and linked into 

the SQL Server process. 

SQL Server compiles both memory-optimized tables and natively compiled modules to native DLLs at the 

time the object is created. In addition, the table and module DLLs are recompiled after database or 

server restart. The information necessary to recreate the DLLs is stored in the database metadata; the 

DLLs themselves are not part of the database. Thus, for example, the DLLs are not part of database 

backups. 

Maintenance of DLLs 
The DLLs for memory optimized tables and natively compiled modules are stored in the filesystem, along 

with other generated files, which are kept for troubleshooting and supportability purposes.  

The following query shows all table and module DLLs currently loaded in memory on the server: 

SELECT name, description FROM sys.dm_os_loaded_modules 
WHERE description = 'XTP Native DLL' 

 

Database administrators do not need to maintain the files that are generated by native compilation. SQL 

Server automatically removes generated files that are no longer needed, for example on table and 

module deletion, when the database is dropped, and also on server or database restart. 

Native compilation of tables 
Creating a memory optimized table using the CREATE TABLE statement results in the table information 

being written to the database metadata, table and index structures being created in memory, and also 

the table being compiled to a DLL. 

Consider the following sample script, which creates a database and a single memory optimized table:  

USE master 
GO 
IF db_id('IMDBmodules') IS NOT NULL DROP DATABASE  IMDBmodules; 
GO 
CREATE DATABASE  IMDBmodules; 
GO 
ALTER DATABASE  IMDBmodules  ADD FILEGROUP  IMDBmodules_mod CONTAINS MEMORY_OPTIMIZED_DAT
A; 
GO 
-- adapt filename as needed 
ALTER DATABASE  IMDBmodules   
      ADD FILE (name = ' IMDBmodules_mod',filename = 'c:\IMData\ IMDBmodules_mod')  
      TO FILEGROUP  IMDBmodules_mod;  
GO 
USE  IMDBmodules  
GO 
CREATE TABLE dbo.t1 
(c1 int not null primary key nonclustered, 
 c2 int) 
WITH (MEMORY_OPTIMIZED=ON); 
GO 
-- retrieve the path of the DLL for table t1 
SELECT name, description FROM sys.dm_os_loaded_modules 
WHERE name LIKE '%xtp_t_' + cast(db_id() AS varchar(10))  
                 + '_' + cast(object_id('dbo.t1') AS varchar(10)) + '%.dll'; 
GO 
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The table creation results in the compilation of the table DLL, and also loading that DLL in memory. The 

DMV query immediately after the CREATE TABLE statement retrieves the path of the table DLL.  Note 

that the name of the DLL includes a ‘t’ for table, followed by the database id and the object id.  

The table DLL for t1 incorporates the index structures and row format of the table. SQL Server uses the 

DLL for traversing indexes and retrieving rows, as well as the contents of the rows. 

Native compilation of modules 
Modules that are marked with NATIVE_COMPILATION are natively compiled. This means the Transact-

SQL statements in the module are all compiled down to native code, for efficient execution of 

performance-critical business logic. 

Consider the following sample stored procedure, which inserts rows in the table t1 from the previous 

example: 

CREATE PROCEDURE dbo.p1 
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER 
AS 
BEGIN ATOMIC 
WITH (TRANSACTION ISOLATION LEVEL=snapshot, LANGUAGE=N'us_english') 
 
  DECLARE @i int = 1000000 
  WHILE @i > 0 
  BEGIN 
    INSERT dbo.t1 VALUES (@i, @i+1) 
 SET @i -= 1 
  END 
 
END 
GO 
EXEC dbo.p1 
GO 
-- reset 
DELETE FROM dbo.t1 
GO 

 

The DLL for the procedure p1 can interact directly with the DLL for the table t1, as well as the In-

Memory OLTP storage engine, to insert the rows as fast as possible.  

The In-Memory OLTP compiler leverages the query optimizer to create an efficient execution plan for 

each of the queries in the stored procedure. Note that, for natively compiled modules, the query 

execution plan is compiled into the DLL. SQL Server 2016 does not support automatic recompilation of 

natively compiled modules, However, you can use the sp_recompile stored procedure to force a natively 

compiled  module to be recompiled at its next execution. You also have the option of ALTERing a 

natively compiled module definition, which will also cause a recompilation.  While recompilation is in 

progress, the old version of the module continues to be available for execution. Once compilation 

completes, the new version of the module is installed.  

In addition to forcing a module recompile, when you ALTER a natively compiled module. For natively 

compiled procedures the following options can be changed: 

 Parameter list 

 EXECUTE AS 

 TRANSACTION ISOLATION LEVEL 

 LANGUAGE 
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 DATEFIRST 

 DATEFORMAT 

 DELAYED_DURABILITY 

Note that the only time natively compiled modules are recompiled automatically is on first execution 

after server restart, as well as after failover to an AlwaysOn secondary 

 

Compilation and Query Processing 

Figure 26 illustrates the compilation process for natively compiled stored procedures. The process is 

similar for other types of natively compiled modules.  
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Figure 26: Native compilation of stored procedures 

 

1. The user issues a CREATE PROCEDURE statement to SQL Server 

2. The parser and algebrizer create the processing flow for the procedure, as well as query trees 

for the Transact-SQL queries in the stored procedure 

3. The optimizer creates optimized query execution plans for all the queries in the stored 

procedure 

4. The In-Memory OLTP compiler takes the processing flow with the embedded optimized query 

plans and generates a DLL that contains the machine code for executing the stored procedure 

5. The generated DLL is loaded in memory and linked to the SQL Server process 

Invocation of a natively compiled stored procedure translates to calling a function in the DLL, as shown 

in Figure 27 
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Figure 27: Execution of natively compiled stored procedures 

 

1. The user issues an ‘EXEC myproc’ statement 
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2. The parser extracts the name and stored procedure parameters 

3. The In-Memory OLTP runtime locates the DLL entry point for the stored procedure 

4. The DLL executes the procedure logic and returns the results to the client 

Parameter sniffing 

Interpreted Transact-SQL stored procedures are compiled into intermediate physical execution plans at 

first execution (invocation) time, in contrast to natively compiled stored procedures, which are natively 

compiled at create time. When interpreted stored procedures are compiled at invocation, the values of 

the parameters supplied for this invocation are used by the optimizer when generating the execution 

plan. This use of parameters during compilation is called “parameter sniffing”.  

Parameter sniffing is not used for compiling natively compiled stored procedures. All parameters to the 

stored procedure are considered to have UNKNOWN values. 

Optimization of natively compiled stored procedures has most of the same goals as optimization of 

interpreted procedures.  That is, the optimizer needs to find query plans for each of the statements in 

the procedure so that those statements to be executed as efficiently as possible.  As described in the 

earlier section on T-SQL Support, the surface area of allowed Transact-SQL constructs is limited in 

natively compiled procedures.  The optimizer is aware of these limitations, so certain transformations it 

might perform for queries outside of a natively compiled procedure are not supported.  

SQL Server Feature Support 
Many SQL Server features are supported for In-Memory OLTP and databases containing memory-

optimized tables, but not all. For example, AlwaysOn components, log shipping, and database backup 

and restore are fully supported. Transactional replication is supported, with memory-optimized tables as 

subscribers. However, database mirroring is not supported. You can use SQL Server Management Studio 

to work with memory-optimized tables and SSIS is also supported.  

For the full list of supported and unsupported features, please refer to the SQL Server In-Memory OLTP 

documentation.  

Manageability Experience 
In-Memory OLTP is completely integrated into the manageability experience of SQL Server. As 

mentioned above, SQL Server Management Studio is able to work with your memory-optimized tables, 

filegroups and natively compiled procedures. In addition, you can use Server Management Objects 

(SMO) and PowerShell to manage your memory-optimized objects. 

Memory Requirements 
 

When running In-Memory OLTP, SQL Server will need to be configured with sufficient memory to hold 

all your memory-optimized tables. Failure to allocate sufficient memory will cause transactions to fail at 

run-time during any operations that require additional memory. Normally this would happen during 

INSERT or UPDATE operations, but could also happen for DELETE operations on memory-optimized table 

with range indexes. As we saw in the section above on Bw-trees, a DELETE can cause a page merge to 

happen, and because index pages are never updated, the merging operation allocates new pages. The 
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In-Memory OLTP memory manager is fully integrated with the SQL Server memory manger and can 

react to memory pressure when possible by becoming more aggressive in cleaning up old row versions. 

When predicting the amount of memory you’ll need for your memory-optimized tables, a rule of thumb 

is that you should have two times the amount of memory that your data will take up. Beyond this, the 

total memory requirement depends on your workload; if there are a lot of data modifications due to 

OLTP operations, you’ll need more memory for the row versions. If you’re doing lots of reading of 

existing data, there might be less memory required.  

For planning space requirements for indexes, hash indexes are straightforward. Each bucket requires 8 

bytes, so you can just compute the number of buckets times 8 bytes. The size for your range indexes 

depends on both the size of the index key and the number of rows in the table. You can assume each 

index row is 8 bytes plus the size of the index key (assume K bytes), so the maximum number of rows 

that fit on a page would be 8176/(K+8). Divide that result into the expected number of rows to get an 

initial estimate. Remember that not all index pages are 8K, and not all pages are completely full. As 

pages need to be split and merged, new pages are created and you’ll need to allow space for them, until 

the garbage collection process removes them. 

Memory Size Limits 
Although there is no hard limit on the amount of memory that can be used for memory-optimized tables 

in SQL Server 2016. Microsoft recommends an upper limit of no more than 2 TB of table data. Not only is 

this the limit Microsoft uses in its testing, but there are other system resource issues that can cause 

performance degradation if this limit is exceeded.  

The only hard limit is the amount of memory on your system and Microsoft limits your memory-

optimized tables to no more than 80% of  your system’s maximum memory value.  

Managing Memory with the Resource Governor 
A tool that allows you to be proactive in managing memory is the SQL Server Resource Governor. A 

database can be bound to a resource pool and you can assign a certain amount of memory to this pool. 

The memory-optimized tables in that database cannot use more memory than that, and this becomes 

the maximum memory value of which no more than 80% can be used for memory-optimized tables. This 

limit is needed  to ensure the system remains stable under memory pressure.  In fact, any memory 

consumed by memory-optimized tables and their indexes is managed by the Resource Governor, and no 

other class of memory is managed by the Resource Governor. If a database is not explicitly mapped to a 

pool, it will implicitly be mapped to the Default pool. 

If you want to use Resource Governor to limit the memory for memory-optimized tables, the first step is 

to create a memory pool for your In-Memory OLTP database specifying a MAX_MEMORY_PERCENT 

value.  This specifies the percentage of the SQL Server memory which may be allocated to memory-

optimized tables in databases associated with this pool. 

For example: 

CREATE RESOURCE POOL IMPool WITH (MAX_MEMORY_PERCENT=50); 

ALTER RESOURCE GOVERNOR RECONFIGURE; 
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Once you have created your resource pool(s), you need to bind the databases which you want to 

manage to the respective pools using the procedure sp_xtp_bind_db_resource_pool. Note that one pool 

may contain many databases, but a database is only associated with one pool at any point in time. 

Here is an example: 

EXEC sp_xtp_bind_db_resource_pool 'IMDB', 'IMPool'; 

 

Because memory is assigned to a resource pool as it is allocated, simply associating a database with a 

pool will not transfer the assignment of any memory already allocated.  In order to do that, you need to 

take the database offline and bring it back online.  As the data is read into the memory-optimized tables, 

the memory is associated with the new pool. 

For example: 

ALTER DATABASE [IMDB] SET OFFLINE; 

ALTER DATABASE [IMDB] SET ONLINE; 

 

Should you wish to remove the binding between a database and a pool, you can use the procedure 

sp_xtp_unbind_db_resource_pool.  For example, you may wish to move the database to a different pool, 

or to delete the pool entirely, to replace it with some other pool(s).    

EXEC sp_xtp_unbind_db_resource_pool 'IMPool'; 

 

More details can be found in the online documentation: https://msdn.microsoft.com/en-

us/library/dn465873.aspx 

Metadata 
Several existing metadata objects have been enhanced to provide information about memory-optimized 

tables and procedures and new objects have been added. 

There is one function that has been enhanced: 

 OBJECTPROPERTY – now includes a property  TableIsMemoryOptimized 

Catalog Views 

The following system views have been enhanced: 

 sys.tables – has three new columns:  
o durability (0 or 1) 
o  durability_desc (SCHEMA_AND_DATA and SCHEMA_ONLY)  
o is_memory_optimized (0 or 1) 

 sys.table_types – now has a column is_memory_optimized 

 sys.indexes – now has a possible type value of 7 and a corresponding type_desc value of 
NONCLUSTERED HASH. (Range indexes have a type_value of 2 and a type_desc of 
NONCLUSTERED, just as for a nonclustered B-tree index.) 

https://msdn.microsoft.com/en-us/library/dn465873.aspx
https://msdn.microsoft.com/en-us/library/dn465873.aspx
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 sys.index_columns   now has different semantics for the column is_descending_key, in that for 
HASH indexes, the value is meaningless and ignored.  

 sys.data_spaces -- now has a possible type value of FX and a corresponding type_desc value of 
MEMORY_OPTIMIZED_DATA_FILEGROUP 

 sys.sql_modules and sys.all_sql_modules – now contain a column uses_native_compilation 

 

In addition, there are several new metadata objects that provide information specifically for memory-

optimized tables.  

A new catalog view has been added to support hash indexes:  sys.hash_indexes. This view is based on 

sys.indexes so has the same columns as that view, with one extra column added. The bucket_count 

column shows a count of the number of hash buckets specified for the index and the value cannot be 

changed without dropping and recreating the index.  

Dynamic Management Objects 

The following SQL Server Dynamic Management Views provide metadata for In-Memory OLTP.  (The 
xtp identifier stands for ‘eXtreme transaction processing’.) The ones that start with sys.dm_db_xtp_* 

give information about individual In-Memory OLTP -enabled databases, where the ones that start with 
sys.dm_xtp_* provide instance-wide information.  You can read about the details of these objects in the 
documentation. Some of these DMVs have already been mentioned in earlier relevant sections of this 
paper. 

For more information about DMVs that support memory-optimized tables, see Memory-Optimized 
Table Dynamic Management Views. 

 sys.dm_db_xtp_checkpoint_stats 
 sys.dm_db_xtp_checkpoint_files 
  
 sys.dm_db_xtp_gc_cycles_stats 
 sys.dm_xtp_gc_stats 
 sys.dm_xtp_gc_queue_stats 
  
 sys.dm_xtp_threads 
 sys.dm_xtp_system_memory_consumers 
 sys.dm_db_xtp_memory_consumers 
 sys.dm_db_xtp_table_memory_stats 
  
 sys.dm_xtp_transaction_stats 
 sys.dm_db_xtp_transactions 
 sys.dm_xtp_transaction_recent_rows 
  
 sys.dm_db_xtp_index_stats 
 sys.dm_db_xtp_hash_index_stats 
 sys.dm_db_xtp_nonclustered_index_stats 
 sys.dm_db_xtp_object_stats 
  

http://msdn.microsoft.com/en-us/library/dn133203(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn133203(v=sql.120).aspx
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8d0b18ca-db4d-4376-9905-3e4457727c46.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/ac8e6333-7a9f-478a-b446-5602283e81c9.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/80190480-8761-49af-bb6b-b59b0c189512.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8287d611-50e3-43e1-ba8d-3e3793d3ba0e.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/c18c6200-8cb9-4a7b-a8f2-ed586a169c29.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/9eb0dd82-7920-42e0-9e50-7ce6e7ecee8b.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/9389f48d-0de5-47bd-9821-4db8f04504e4.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/8d0a50b8-2015-4576-930f-e3307dfc888e.htm
mk:@MSITStore:C:/SQL%20Server/Hekaton/Sql_Hekaton.chm::/html/07300b59-3cab-4d3e-8138-5ea8f584f88f.htm
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XEvents 
  

The In-Memory OLTP engine provides over 150 xEvents to help you in monitoring and troubleshooting. 

You can run the following query to see the xEvents currently available: 

SELECT p.name, o.name, o.description  
FROM sys.dm_xe_objects o JOIN sys.dm_xe_packages p  
  ON o.package_guid=p.guid 
WHERE p.name = 'XtpEngine'; 
GO  

Performance Counters 
  

The In-Memory OLTP engine provides performance counters to help you in monitoring and 

troubleshooting. You can run the the query below to see the performance counters currently available: 

SELECT object_name as ObjectName, counter_name as CounterName 
FROM sys.dm_os_performance_counters 
WHERE object_name LIKE 'XTP%'; 
GO 

  

My results show 57 counters in seven different categories. The categories are listed and described in 

Table 7. 

XTP Cursors  

The XTP Cursors performance object contains counters related to internal XTP engine cursors. 

Cursors are the low-level building blocks the XTP engine uses to process Transact-SQL queries. 

As such, you do not typically have direct control over them. 

XTP Databases [No documentation yet.]  

XTP Garbage 

Collection  

The XTP Garbage Collection performance object contains counters related to the XTP engine's 

garbage collector. Counters include the number of rows processed, the number of scans per 

second, and the number of rows expired per second. 

XTP Phantom 

Processor  

The XTP Phantom Processor performance object contains counters related to the XTP engine's 

phantom processing subsystem. This component is responsible for detecting phantom rows in 

transactions running at the SERIALIZABLE isolation level. 

XTP Storage 
The XTP Storage object contains counters related to the checkpoint files.  Counters include the 

number for checkpoints closed, and the number of files merged. 

XTP 

Transaction Log  

The XTP Transaction Log performance object contains counters related to XTP transaction 

logging in SQL Server. Counters include number of log bytes and number of log records written 

by the In-Memory OLTP engine per second. 

XTP 

Transactions  

The XTP Transactions performance object contains counters related to XTP engine transactions 

in SQL Server. Counters include the number of commit dependencies taken and the number of 

commit dependencies that rolled back.  

Table 7: Categories of performance counters for In-Memory OLTP processing 

 

http://msdn.microsoft.com/en-us/library/dn511011(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511010(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511010(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511006(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511006(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511013(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511013(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511009(v=sql.120).aspx
http://msdn.microsoft.com/en-us/library/dn511009(v=sql.120).aspx
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Figure 28 Report of Memory Usage By Memory Optimized Objects   

This report shows you the space used by the table rows and the indexes, as well as the small amount of 

space used by the system. Remember that hash indexes will have memory allocated for the declared 

number of buckets as soon as they’re created, so this report will show memory usage for those indexes 

before any rows are inserted.  For range indexes, memory will not be allocated until rows are added, 

and the memory requirement will depend on the size of the index keys and the number of rows.  

Migration to In-Memory OLTP  
Although it might sound like In-Memory OLTP is a panacea for all your relational database performance 

problems, this of course is not true. There are some applications that can experience enormous 

improvement when using memory-optimized tables and natively compiled stored procedures, and 

others that will not see drastic gains, or perhaps no gains at all.  The kinds of applications that will 

achieve the best improvements are the ones that are currently experiencing the bottlenecks that In-

Memory OLTP addresses and removes. 

The main bottlenecks that In-Memory OLTP addresses are the following: 

 Lock or latch contention 

The lock and latch-free design of memory-optimized tables is probably the performance benefit that is 

most well-known. As discussed in detail in earlier chapters, the data structures used for the memory-
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optimized tables’ row versions, and the fact that the rows are not stored in memory buffers, allow for 

high concurrency data access and modification without the need for locks or latches. Tables used by 

an application showing excessive lock or latch wait times can be considered for migration to In-

Memory OLTP, and the application’s performance will most likely show substantial improvement. 

  

 I/O and logging  

Rows for your memory-optimized tables are always in memory, so no disk reads are ever required to 

make the data available. The streaming checkpoint operations are also highly optimized to use a 

minimal amount of resources to write the durable data to disk in the checkpoint  files. In addition, 

index information is never written to disk, reducing the I/O requirements even further. If your 

application shows excessive page I/O latch waits, or any other waits associated with reading from or 

writing to disk, you will likely get a performance improvement with memory-optimized tables.  

 

 Transaction logging 

Log I/O can be another bottleneck with disk-based tables, as (in most cases for OLTP operations) 

every table and index row modified is written to the transaction log on disk as a separate log record. 

Not only does In-Memory OLTP allow you to create SCHEMA_ONLY tables that do not require any 

logging, but even for tables defined as SCHEMA_AND_DATA, the logging overhead is significantly 

reduced.  Each log record for changes to a memory-optimized table can contain information about 

many modified rows, and changes to indexes are never logged at all. If your application experiences 

high wait times due to log writes, you can see an improvement after migrating your most heavily 

modified tables to memory-optimized tables.  

 

 Hardware Resource Limitations 

In addition to the limits on disk I/O that can cause performance problems with disk-based tables, 

other hardware resources can also be the cause of bottlenecks.  CPU resources are frequently 

stressed in compute-intensive OLTP workloads. In addition, CPU resources are also cause 

slowdowns when small queries need to be executed repeatedly and the interpretation of the code 

needed by your queries needs to be repeated over and over again. Migrating your code to use 

natively compiled procedures can greatly reduce the CPU resources required because the natively 

compiled code requires far few CPU instructions than the interpreted code needs to perform the same 

operations. If you have many small code blocks running repeatedly, especially if you are noticing a 

high number of recompiles, you may notice a substantial performance improvement after putting your 

code into natively compiled procedures.  

 

The next section will describe some of the most common data access and manipulation scenarios that 

your application might include that would experience some of the bottlenecks listed above.  

  

High Volume of INSERTs 
Applications that are very INSERT oriented, such as sales order entry systems, frequently encounter 

bottlenecks with locks and latches on the last page of a table or index, if the rows are being inserted in a 

particular order. Even if row locks are being used, there are still latches acquired on the page, and for 

very high volumes this can be problematic.  Another impact to performance occurs with the logging 

required for the inserted rows and for the index rows created for each inserted data row.  
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SQL Server In-Memory OLTP addresses these problems by eliminating the need for locks and latches.  

Logging overhead is reduced because operations on memory-optimized tables log their changes more 

efficiently. In addition, the changes to the indexes are not logged at all. If the application is such that the 

INSERT operations initially load data into a staging table, you can consider creating the staging table to 

be SCHEMA_ONLY, and then there will be no logging for the table rows also.  

Finally, the code to process the INSERTs must be run repeatedly, for each row inserted. Using interop 

TSQL imposes a lot of overhead.  If the code to process the INSERTs meets the criteria for creating a 

natively compiled procedure, executing the INSERTs through compiled code can make a major 

difference in performance. 

 

 

High Volume of SELECTs 
An application needing to quickly process a high volume of SELECT operations and to be able to scale to 

support even greater numbers faces some of the same bottlenecks with locking and latching as in the 

previous example. Of course, there is no logging requirement, but the other considerations will still 

apply.  

You do need to be aware of the fact that operations on memory-optimized tables are always executed 

on a single thread; there is no support for parallel operations on memory-optimized tables. If you are 

processing large number of rows in each SELECT, this can be problematic, but fortunately, this is not the 

typical type of query for OLTP workloads. If you do have datasets that would benefit from parallelism, 

you can consider moving the relevant data to a separate table for processing. If that table is a disk-based 

table, then of course parallelism can be considered by the query optimizer.  Alternatively, if moving the 

needed data to its own table reduces the number of rows that need to be scanned, that in itself can 

speed up the processing. Finally, if the code for processing these needed rows can be executed in a 

natively compiled procedure, the speed improvement for compiled code can sometimes outweigh the 

cost of having the run the queries single threaded.  

CPU-intensive operations 
Similar to the first example where large volumes of data have to be inserted, there are additional 

considerations if the data needs to be manipulated before it is available for reading by the application. 

The manipulation can involve updating or deleting some of the data if it is deemed inappropriate, or can 

involve computations to put the data into the proper form for use.  

The biggest bottleneck in this scenario will be the locking and latching as the data is read for processing 

and then the processing is invoked. Additional bottlenecks such as CPU resources can occur depending 

on the complexity of the actual code being executed.  

As discussed, In-Memory OLTP can provide a solution for all of these bottlenecks.  

Extremely fast business transactions 
Applications that need to run a large volume of simple transactions very quickly from hundreds if not 

thousands of concurrent users, experience bottlenecks both from the latching and locking required and 

from the CPU associated with the query processing stack. If the queries themselves are relatively short 
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and simple, the cost of repeated recompilation and query interpretation can become a major 

component of the overall processing time.  

In-Memory OLTP solves these problems by providing a lock and latch free environment.  Also, the ability 

to run the code in a truly compiled form, with no compiling or interpretation, can give an enormous 

performance boost for these kinds of applications. 

Session state management 
Although this is not specifically a type of application, but rather a function required by many different 

types of applications, it still bears mention here.  

Session state management involves maintaining state information across various boundaries where 

normally there is no communication.  The most prominent example is web-based interactions using 

HTTP. When users connect to a website, information about their choices and actions needs to be 

maintained across multiple HTTP requests.  In general, this is something that can be maintained by the 

database system, but typically at a high cost. The state information is usually very dynamic and highly 

concurrent which each user’s information changing very frequently.  It also can involve lookup queries 

for each user to gather other information the system might be keeping for that user, such as past 

activity.  Although the data maintained might be minimal in size, the number of requests to access that 

data can be large, leading to extreme locking and latching requirements resulting in very noticeable 

bottlenecks and serious slowdowns in responses to user requests.  

In-Memory OLTP is perfect solution for this application requirement, as a small memory-optimized table 

can handle an enormous number of concurrent lookups and modifications.  In addition, a session state 

table almost always is transient and does not need to be preserved across server restarts, so a 

SCHEMA_ONLY table can be used an improve the performance even further.  

 

Unsuitable Application Scenarios 
Although there are many types of applications that can gain considerable performance improvement 

when using In-Memory OLTP, either just by creating memory-optimized tables or by including natively 

compiled stored procedures, not every application is suited to In-Memory OLTP.  In most cases, at least 

part of any application could be better served using traditional disk-based tables, or at least, you might 

not see any improvement with In-Memory OLTP. If your application meets any of the following criteria, 

you may need to rethink whether In-Memory OLTP is right for you. 

Inability to make changes 

If your application requires table features that are not supported by memory-optimized 
tables, you will not be able to  create in-memory tables, or you may need to redefine the 
table. In addition, if your application code for accessing and manipulating your table data 
uses constructs not supported for natively compiled procedures, you may have to limit your 
TSQL to using only interop code.  

Memory limitations 

Memory-optimized tables must be completed in memory. If the size of your tables exceeds 
what SQL Server In-Memory OLTP, or your particular machine,  supports, you will not be 
able to have all the required data in memory. Of course, you can have some memory-
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optimized tables and some disk-based tables,  but you’ll need to carefully analyze the 
workload to find which tables will provide the most benefit by being created as memory-
optimized tables.   

Non-OLTP workload 

In-Memory OLTP, as the name implies, is designed to be the most benefit to Online 
Transaction Processing operations. There of course may be of benefit to other types of 
processing, such as reporting and data warehousing, but those are not the design goals of 
the feature. If you are working with processing that is not OLTP in nature, you should make 
sure you careful test all operations, and you may find that In-Memory OLTP does not 
provide you with any measurable improvements.  

Dependencies on locking behavior   

Although not best practice in most cases, you might have application processing that 
depends on the locking behavior supplied with pessimistic concurrency on disk-based 
tables. For example, if you’re using the READPAST hint to manage work queues, you need to 
have locks in order to find the next row in the queue to process. If your application was 
written to expect the behavior experienced in SNAPSHOT ISOLATION on disk-based tables 
when a write-write conflict occurs, i.e. that the conflict is not reported until the first process 
commits, then you will not want to use SNAPSHOT isolation with memory-optimized tables. 
As mentioned, it is usually not best practice to write an application that depends on specific 
locking behavior, as that can change even without switching to In-Memory OLTP. However, 
that doesn’t mean that no one will have code that does this. If yours is one of those 
applications, you’ll need to either delay converting to In-Memory OLTP, or rewrite the 
relevant sections of your code. 

The Migration Process 
SQL Server In-Memory OLTP can make migration a very straight forward and manageable process, 

because migration doesn’t have to be an all or nothing decision. You could choose to just convert one or 

two critical tables, for which you’d noticed a very large number of locks or latches, and/or long durations 

on waits for locks or latches.  Tables should be converted before stored procedures, since natively 

compiled procedures will only be able to access memory-optimized tables.  

Ideally, before starting any migration of tables or stored procedures to use In-Memory OLTP, you 

perform a thorough analysis of your current workload, and establish a baseline. Monitoring, analysis and 

baselining is well beyond the scope of this book, but you can take a look at this page in the SQL Server 

2016 documentation to get several pointers on performance this kind of analysis: 

https://msdn.microsoft.com/en-us/library/ms189081(v=sql.130).aspx .  

You might consider something like the following list of steps as you work through a migration to In-

Memory OLTP: 

1. Identify the tables with the biggest bottlenecks 
2. Address the constructs in the table DDL that are not supported for memory-optimized 

tables.  Note that there is Memory Optimization Advisor tool, available through SQL Server 
Management Studio by right-clicking any table in any database, that can tell you what 
constructs are not supported for memory-optimized tables.  

3. Recreate the tables as in-memory, to be accessed using interop code. 

https://msdn.microsoft.com/en-us/library/ms189081(v=sql.130).aspx
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4. Identify procedures or sections of code with biggest performance bottlenecks, that access 
the converted tables. 

5. Address the T-SQL limitations in the code. If the code is in a stored procedure, you can use 
the Native Compilation Advisor tool, available through SQL Server Management Studio by 
right-clicking any stored procedure. Recreate the code in a natively compiled procedure. 

6. Compare performance against the baseline. 

You can think of this as a cyclic process. Start with a few tables and convert them. Then convert the 

most critical procedures that access those tables. Then convert a few more tables, and then a couple of 

additional procedures.  You can repeat this cycle as needed, until the performance gains are minimal.  

Best Practice Recommendations  
Although I have mentioned some best practice recommendations earlier in this paper as I described 

various features and the choices you can make, I want to include a specific list here of the most 

important ones. Keep these principals in mind as you design your memory-optimized tables and indexes: 

 

Index Tuning 
 Do not over or underestimate the bucket count for hash indexes if at all possible. The bucket 

could should be at least equal to the number of distinct values for the index key columns.  

 For very low cardinality columns, create range indexes instead of hash indexes. 

 Create columnstore indexes only for tables that will be used primarily for reporting purposes. 

 

Also, because of differences in the way that memory-optimized tables are organized and managed, the 

optimizer does need to be aware of different choices it may need to make and certain execution plan 

options that are not available when working with memory-optimized tables. The most important 

differences are listed here: 

 There are no ordered scans with hash indexes.   

If your query is looking for a range of values or requires that the results be returned in 
sorted order, a hash index will not be useful at all, and thus will be not even be considered 
by the optimizer.  

 A hash index can only be used if the filter is based on an equality comparison. 

This is a similar situation to the previous bullet. If the query does not specify an exact value 
for one of the columns in the hash index key, the hash value cannot be determined. So if we 
have a hash index on city, and the query is looking for city LIKE ‘San%’, a hash lookup is not 
possible. 

 A hash index cannot be used if not all columns are included in filter conditions. 

The examples shows earlier for hash indexes illustrated an index on just a single column. 
However, just like indexes on disk-based tables, hash indexes on memory-optimized tables 
can be composite.  However, the hash function used to determine which bucket a row 
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belongs in is based on all columns in the index. So if we had an index on (city, state), a row 
for a customer from Springfield, Illinois would hash to a completely different value than a 
row for a customer from Springfield, Missouri, and also would hash to a completely 
different value than a row for a customer from Chicago, Illinois.  If a query only supplies a 
value for city, a hash value cannot be generated and the index cannot be used, unless the 
entire index is used for a scan.  

 Range indexes cannot be scanned in reverse order. 

Although there is no concept of ‘previous pointers’ in a range index on a memory-optimized 
tables,  if your query requests the data to be sorted in DESC order, the optimizer could 
choose to use an index was built as a descending index. In fact, it is possible to have two 
indexes on the same column, one defined as ascending and one defined as descending. It is 
also possible to have both a range and a hash index on the same column.  In general,  the 
optimizer will choose to use a hash index over a range index if the cost estimations are the 
same.  

 Halloween protection is not incorporated into the query plans. 

Halloween protection provides guarantees against accessing the same row multiple times 
during query processing. Operations on disk-based tables use spooling operators to make 
sure rows are not accessing repeatedly, but this is not necessary for plans on memory-
optimized tables.  Halloween protection is provided in the storage engine for memory-
optimized tables by including a statement ID as part of the row version overhead bytes. The 
statement ID that introduced a row version is stored with the row, so if the same statement 
encounters that row again, it knows it has already been processed.  
 

If no index can be used efficiently, the plan chosen will be a table scan. However, with memory-

optimized tables, there really is no concept of a table scan because all rows are connected through their 

indexes. If a plan indicates that a table scan is to be performed any index can be used to access all the 

rows, but this choice is usually made at runtime.  SQL Server will usually use the hash index with the 

lowest bucket count, but this is not guaranteed.  

The costing formula that the optimizer uses for operations on memory-optimized tables is similar to the 

formula for operations on disk-based tables, with only a few exceptions. In addition, natively compiled 

procedure plans will never be recompiled on the fly; the only way to get a new plan is to drop and 

recreate the procedure. Along with this, SQL Server In-Memory OLTP does not keep any row 

modification counters, and does not automatically update statistics on memory-optimized tables. One 

of the reasons for not updating the statistics is so there will be no chance of dependency failures due to 

waiting for statistics to be gathered.  

 

General Suggestions 
 Statistics are not updated automatically, and there are no automatic recompiles of any queries on 

memory-optimized tables.  
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 Memory optimized table variables behave the same as regular table variables, but are stored in 

your database’s memory space, not in tempdb. You can consider using memory-optimized table 

variables anywhere, as they are not transactional and will can help relieve tempdb contention. 

 Use SNAPSHOT isolation level for your memory-optimized tables if at all possible and enable the 

database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT. Remember that there are two 

transaction contexts when using memory-optimized tables, and when memory-optimized tables 

use SNAPSHOT, your disk-based tables must use an isolation level other than SNAPSHOT The 

SET option is only applicable to disk-based tables.   

Summary 
SQL Server In-Memory OLTP  provides the ability to create and work with tables that are memory-

optimized and extremely efficient to manage, providing performance optimization for OLTP workloads. 

They are accessed with true multi-version optimistic concurrency control requiring no locks or latches 

during processing.  All In-Memory OLTP memory-optimized tables must have at least one index, and all 

access is via indexes. In-Memory OLTP memory-optimized tables can be referenced in the same 

transactions as disk-based tables, with only a few restrictions. Natively compiled stored procedures are 

the fastest way to access your memory-optimized tables and performance business logic computations. 

For more information: 
http://www.microsoft.com/sqlserver/: SQL Server Web site 

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter  

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter   

 

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5 

(excellent), how would you rate this paper and why have you given it this rating? For example: 

 Are you rating it high due to having good examples, excellent screen shots, clear writing, 

or another reason?  

 Are you rating it low due to poor examples, fuzzy screen shots, or unclear writing? 

This feedback will help us improve the quality of whitepapers we release.  

This whitepaper will eventually be updated for the final product release. The final paper will 

contain more technical details on the following topics; 

1. Monitoring and Troubleshooting 

2. Performance Examples 

3. Best Practices Suggestions 

If you have specific questions in these areas, or any of the areas discussed in the current paper, 

that you would like to see addressed in the book, please submit them through the feedback link. 

Send feedback. 
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